Abstract
Human milk oligosaccharides (HMOs) are a group of complex glycans in human milk and play an important role in promoting the growth and development of infants, and more than 200 kinds of HMOs have been identified so far. In this paper, the types and structures of HMOs and their roles in improving infant intestinal health, promoting immune system development and brain development were reviewed. The application status of HMOs was summarized, the possibility and necessity of industrial production and application of HMOs in the future were prospected.
Publication Date
3-27-2024
First Page
1
Last Page
8
DOI
10.13652/j.spjx.1003.5788.2023.60166
Recommended Citation
Yikang, JIANG; Ling, DONG; Hongfei, LIU; Lina, PAN; Yibo, HU; Xiyang, PENG; Wenli, KANG; Xiaoyu, PENG; Jiaqi, WANG; and Wei, LI
(2024)
"Research advances on the association between human milk oligosaccharides and infant health,"
Food and Machinery: Vol. 40:
Iss.
2, Article 1.
DOI: 10.13652/j.spjx.1003.5788.2023.60166
Available at:
https://www.ifoodmm.cn/journal/vol40/iss2/1
References
[1] 王艳菲, 公丕民, 张兰威. 母乳低聚糖及其在婴幼儿配方乳粉中的替代品研究进展[J]. 乳业科学与技术, 2020, 43(1): 25-32.
WANG Y F, GONG P M, ZHANG L W. Recent progress in human milk oligosaccharides and their substitutes in infant formula[J]. Journal of Dairy Science and Technology, 2020, 43(1): 25-32.
[2] 陈雪, 刘峰, 栾庆民, 等. 母乳低聚糖研究进展[J]. 精细与专用化学品, 2019, 27(12): 10-12.
CHEN X, LIU F, LUAN Q M, et al. Research progress on human milk oligosaccharides (HMOs) [J]. Fine and Specialty Chemicals, 2019, 27(12): 10-12.
[3] OKBURAN G, KIZILER S. Human milk oligosaccharides as prebiotics[J]. Pediatrics and Neonatology, 2023, 64(3): 231-238.
[4] REVERRI E J, DEVITT A A, KAJZER J A, et al. Review of the clinical experiences of feeding infants formula containing the human milk oligosaccharide 2′-fucosyllactose[J]. Nutrients, 2018, 10(10): 1 346-1 356.
[5] WICINSKI M, SAWICKA E, GBALSKI J, et al. Human milk oligosaccharides: Health benefits, potential applications in infant formulas, and pharmacology[J]. Nutrients, 2020, 12(1): 266-279.
[6] LI W S, WANG J X, LIN Y Y, et al. How far is it from infant formula to human milk? A look at the human milk oligosaccharides[J]. Trends in Food Science & Technology, 2021, 118: 374-387.
[7] KUNTZ S, RUDLOFF S, KUNZ C. Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells[J]. British Journal of Nutrition, 2008, 99(3): 462-471.
[8] BODE L. Human milk oligosaccharides: Every baby needs a sugar mama[J]. Narnia, 2012, 22(9): 1 147-1 162.
[9] LAWSON M A E, O'NEIL I J, KUJAWSKA M, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem[J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2020, 14(2): 635-648.
[10] ZHENG J, XU H, FANG J Q, et al. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and dericatives[J]. Carbohydrate Polymers, 2022, 291: 1-12.
[11] KOBATA A. Structures and application of oligosaccharides in human milk[J]. Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 2010, 86(7): 731-747.
[12] ELWAKIEL M, HAGEMAN J, WANG W D, et al. Human milk oligosaccharides in colostrum and mature milk of Chinese mothers: Lewis positive secretor subgroups[J]. Journal of Agricultural and Food Chemistry, 2018, 66(27): 7 036-7 043.
[13] AKKERMAN R, FAAS M M, DEVOS P. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(9): 1 486-1 497.
[14] 魏远安, 张丽君, 郑惠玲, 等. 中国母乳低聚糖的研究进展和现状[J]. 乳业科学与技术, 2016, 39(3): 33-38.
WEI Y A, ZHANG L J, ZHENG H L, et al. Recent progress and current status of studies on human milk oligosaccharides (HMOs) and their application in China[J]. Journal of Dairy Science and Technology, 2016, 39(3): 33-38.
[15] RAY C, KERKETTA J A, RAO S, et al. Human milk oligosaccharides: The journey ahead[J]. International Journal of Pediatrics, 2019, 1: 1-8.
[16] COPPA G V, PIERANI P, ZAMPINI L, et al. Oligosaccharides in human milk during different phases of lactation[J]. Acta Paediatrica, 1999, 88(430): 89-94.
[17] PLOWS J F, BERGER P K, JONES R B, et al. Longitudinal changes in human milk oligosaccharefides (HMOs) over the course of 24 months of lactation[J]. The Journal of Nutrition, 2021, 151(4): 876-882.
[18] 袁慧芝, 荀一萍, 蒲晓璐, 等. 母乳低聚糖与婴儿肠道菌群相关性研究进展[J]. 食品科学, 2021, 42(13): 1-9.
YUAN H Z, XUN Y P, PU X L, et al. Research progress on the relationship between human milk oligosaccharides and infant gut microbiota[J]. Food Science, 2021, 42(13): 1-9.
[19] YU Z T, CHEN C, NEWBURG D S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes[J]. Glycobiology, 2013, 23(11): 1 281-1 292.
[20] SELA D A, MILLS D A. Nursing our microbiota: Molecular linkages between bifidobacteria and milk oligosaccharides[J]. Trends in Microbiology, 2010, 18(7): 298-307.
[21] COPPA G V, GABRIELLI O, ZAMPINI L, et al. Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum[J]. Journal of Pediatric Gastroenterol and Nutrition, 2011, 53(1): 80-87.
[22] NEWBURG D S, MORELLI L. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota[J]. Pediatric Research, 2020, 77(6): 115-120.
[23] UNDERWOOD M A, GERMAN J B, LEBRILLA C B, et al. Bifidobacterium longum subspecies infantis: Champion colonizer of the infant gut[J]. Pediatric Research, 2014, 77(1/2): 229-235.
[24] YU Z T, CHEN C, KLING D E, et al. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota[J]. Glycobiology, 2012, 23(2): 169-177.
[25] UNDERWOOD M A, GAERLAN S, DELEOZ M L A, et al. Human milk oligosaccharides in premature infants: Absorption, excretion, and influence on the intestinal microbiota[J]. Pediatric Research, 2015, 78(6): 670-677.
[26] 张凤, 侯心悦, 郭丽琼, 等. 母乳源长双歧杆菌的筛选鉴定及耐氧驯化[J]. 食品与机械, 2023, 39(10): 13-18, 26.
ZHANG F, HOU X Y, GUO L Q, et al. Screening and identification of Bifidobacterium longum from maternal milk and its domestication of oxygen-domestication[J]. Food & Machinery, 2023, 39(10): 13-18, 26.
[27] COLLADO M C, CERNADA M, BAUERL C, et al. Microbial ecology and host-microbiota interactions during early life stages[J]. Gut Microbes, 2012, 3(4): 352-365.
[28] DELEOZ M L A, KALANETRA K M, BOKULICH N A, et al. Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: A proof-of-concept study[J]. Journal of Proteome Research, 2015, 14(1): 491-502.
[29] BONDUE P, CREVECOEUR S, BROSE F, et al. Cell-free spent media obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis grown in media supplemented with 3′-sialyllactose modulate virulence gene expression in Escherichia coli O157: H7 and Salmonella typhimurium[J]. Frontiers in Microbiology, 2016, 7: 1-12.
[30] KUNZ C, RUDLOFF S, BAIER W, et al. Oligosaccharides in human milk: Structural, functional, and metabolic aspects[J]. Annual Review of Nutrition, 2000, 20(1): 699-722.
[31] NEWBURG D S, RUIZ-PALACIOS G M, MORROW A L. Human milk glycans protect infants against enteric pathogens[J]. Annual Review of Nutrition, 2005, 25(1): 37-58.
[32] NEWBURG D S. Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans[J]. Journal of Animal Science, 2009, 87(13): 26-34.
[33] MORROW A L, RUIZ-PALACIOS G M, ALTAYE M, et al. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants[J]. The Journal of Pediatrics, 2004, 145(3): 297-303.
[34] MARTIN-SOSA S, MARTIN M J, HUESO P. The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains[J]. The Journal of Nutrition, 2002, 132(10): 3 067-3 072.
[35] ANGELONI S, RIDET J L, KUSY N, et al. Glycoprofiling with micro-arrays of glycoconjugates and lectins[J]. Glycobiology, 2005, 15(1): 31-41.
[36] 贾宏信, 苏米亚, 陈文亮, 等. 人乳低聚糖组成和功能的研究进展[J]. 乳业科学与技术, 2015, 38(3): 30-33.
JIA H X, SU M Y, CHEN W L, et al. Recent progress in research on composition and functions of human milk oligosaccharides[J]. Journal of Dairy Science and Technology, 2015, 38(3): 30-33.
[37] MANTHEY C F, AUTRAN C A, ECKMANN L, et al. Human milk oligosaccharides protect against enteropathogenic Escherichia coli attachment in vitro and EPEC colonization in suckling mice[J]. Journal of Pediatric Gastroenterology and Nutrition, 2014, 58(2): 165-168.
[38] YOLITZ J, SCHWING C, CHANG J, et al. Signal peptide of HIV envelope protein impacts glycosylation and antigenicity of gp120[J]. PNAS, 2018, 115(10): 2 443-2 448.
[39] HONG P, NINONUEVO M R, LEE B, et al. Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN) [J]. British Journal of Nutrition, 2008, 101(4): 482-486.
[40] KUNTZ S, KUNZ C, RUDLOFF S. Oligosaccharides from human milk induce growth arrest via G2/M by influencing growth-related cell cycle genes in intestinal epithelial cells[J]. British Journal of Nutrition, 2009, 101(9): 1 306-1 315.
[41] PRITT B S, CLARK C G. Amebiasis[J]. Mayo Clin Proceeding, 2008, 83(10): 1 154-1 160.
[42] CORREA R O, FACHI J L, VIEIRA A, et al. Regulation of immune cell function by short-chain fatty acids[J]. Clinical & Translational Immunology, 2016, 5(4): 73-80.
[43] ROUSSEAUX A, BROSSEAU C, GALL S L, et al. Human milk oligosaccharides: Their effects on the host and their potential as therapeutic agents[J]. Frontiers in Immunology, 2021, 12: 680911.
[44] RUDLOFF S, POHLENTZ G, BORSCH C, et al. Urinary excretion of in vivo 13C-labelled milk oligosaccharides in breastfed infants[J]. The British Journal of Nutrition, 2012, 107(7): 957-963.
[45] LIU T T, CHEN P Y, MUNIR M, et al. HMOs modulate immunoregulation and gut microbiota in a β-lactoglobulininduced allergic mice model[J]. Journal of Functional Food, 2020, 70: 103993.
[46] EIWEGGER T, STAHL B, SCHMITT J, et al. Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro[J]. Pediatric Research, 2004, 56(4): 536-540.
[47] ATOCHINA O, HARN D. LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction[J]. Clinical and Diagnostic Laboratory Immunology, 2005, 12(9): 1 041-1 049.
[48] SPRENGER N, BINIA A, AUSTIN S. Human milk oligosaccharides: Factors affecting their composition and their physiological significance[J]. Nestle Nutrition Institute Workshop Series, 2019, 90: 43-56.
[49] ACKERMAN D L, DOSTER R S, WEITKAMP J H, et al. Human milk oligosaccharides exhibit antimicrobial and antibiofilm properties against group B Streptococcus[J]. ACS Infectious Disease, 2017, 3(8): 595-605.
[50] CRAFT K M, THOMAS H C, TOWNSEND S D. Interrogation of human milk oligosaccharide fucosylation patterns for antimicrobial and antibiofilm trends in group B Streptococcus[J]. ACS Infectious Diseases, 2018, 4: 1 755-1 765.
[51] LIN A E, AUTRAN C A, SZYSZKA A, et al. Human milk oligosaccharides inhibit growth of group B Streptococcus[J]. Journal of Biological Chemistry, 2017, 292(27): 11 243-11 249.
[52] ACKERMAN D L, CRAFT K M, DOSTER R S, et al. Antimicrobial and antibiofilm activity of human milk oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii[J]. ACS Infectious Disease, 2018, 4: 315-324.
[53] 吴晓彬, 余加林, 李雪梅. 岩藻糖基化人乳低聚糖在新生儿无乳链球菌肺炎治疗中的作用[J]. 中国微生态学杂志, 2020, 32(3): 264-268.
WU X B, YU J L, LI X M. The role of fucosylated human milk oligosaccharide in the treatment of neonatal Streptococcus agalactiae pneumonia[J]. China Journal of Microecology, 2020, 32(3): 264-268.
[54] NOLAN L S, RIMER J M, GOOD M. The role of human milk oligosaccharides and probiotics on the neonatal microbiome and risk of necrotizing enterocolitis: A narrative review[J]. Nutrients, 2020, 12(10): 3 052-3 064.
[55] 史玉东, 刘梦瑶, 卢卫红. 母乳低聚糖的结构与功能研究进展[J]. 食品安全质量检测学报, 2020, 11(21): 7 656-7 662.
SHI Y D, LIU M Y, LU W H. Research progress in the structure and functional of human milk oligosaccharides[J]. Journal of Food Safey and Quality, 2020, 11(21): 7 656-7 662.
[56] HUANG Z Y, LI Y R, LUO Y J, et al. Human milk oligosaccharides 3′-sialyllactose and 6′-sialyllactose protect intestine against necrotizing enterocolitis damage induced by hypoxia[J]. Journal of Functional Foods, 2021, 86: 104708.
[57] AUTRAN C A, KELLMAN B P, KIM J H, et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants[J]. Gut, 2018, 67(6): 1-7.
[58] AUTRAN C A, SCHOTERMAN M H C, JANTSCHER-KRENN E, et al.Sialylated galacto-oligosaccharides and 2′-fucosyllactose reduce necrotising enterocolitis in neonatal rats[J]. British Journal of Nutrition, 2016, 2: 294-299.
[59] SODHI C P, WIPF P, YAMAGUCHI Y, et al. The human milk oligosaccharides 2′-fucosyllactose and 6′-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling[J]. Pediatric Research, 2020, 89: 91-101.
[60] GOOD M, SODHI C P, YAMAGUCHI Y, et al. The human milk oligosaccharide 2′-fucosyllactose attenuates the severity of experimentalnecrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine[J]. British Journal of Nutrition, 2016, 116(7): 1 175-1 187.
[61] WANG B. Sialic acid is an essential nutrient for brain development and cognition[J]. Annual Review of Nutrition, 2009, 29: 177-222.
[62] 王芳. 唾液酸乳糖的摄入对仔猪脑发育、认知功能、视觉发育及唾液酸表达的影响[D]. 厦门: 厦门大学, 2015: 70-129.
WANG F. Impact of sialyllactose intake on brain development, cognitive function, eye development and sialic acid expression of postnatal piglets[D]. Xiamen: Xiamen University, 2015: 70-129.
[63] OLIVEROS E, RAMIREZ M, VAZQUEZ E, et al. Oral supplementation of 2′-fucosyllactose during lactation improves memory and learning in rats[J]. Journal of Nutritional Biochemistry, 2016, 31: 20-27.
[64] BERGER P K, PLOWS J F, JONES R B, et al. Human milk oligosaccharide 2′-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers[J]. PLoS One, 2020, 15(2): 0228323.
[65] 杨成, 史润东, 姜欣, 等. 常见功能性低聚糖的应用研究进展及安全性分析[J]. 食品与生物技术学报, 2020, 39(11): 1-11.
YANG C, SHI R D, JIANG X, et al. Progress in application and safety analysis of common functional oligosaccharides[J]. Journal of Food Science and Technology, 2020, 39(11): 1-11.
[66] GAN J N, CAO C Y, STAHL B, et al. Advances and challenges for obtaining human milk oligosaccharides: Extraction from natural sources and synthesis by intentional design[J]. Trends in Food Science & Technology, 2023, 141: 104203.
[67] SPRENGER G A, BAUMGARTNER F, ALBERMANN C. Production of human milk oligosaccharides by enzymatic and whole-cell micro bialbiotransformations[J]. Journal of Biotechnology, 2017, 258: 79-91.
[68] MARRIAGE B J, BUCK R H, GOEHRING K C, et al. Infants fed a lower calorie formula with 2′FL show growth and 2′FL uptake like breast-fed infants[J]. Journal of Pediatric Gastroenterology and Nutrition, 2015, 61(6): 649-658.
[69] PUCCIO G, ALLIET P, CAJOZZO C, et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity[J]. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64(4): 624-631.