•  
  •  
 

Corresponding Author(s)

李宗军(1967—),男,湖南农业大学教授,博士。E-mail:hnlizongjun@163.com

Abstract

Objective: To establish a rapid method for moisture detection of high cellulose and lignin materials. Methods: The areca nut, a Chinese herbal medicine containing high cellulose and lignin, was selected. Use a near-infrared spectrometer to collect near-infrared diffuse reflectance spectra. Apply NIR Cal modeling software to preprocess the spectral data, select the optimal feature wavelengths, and use partial least squares (PLS) analysis to establish a quantitative model for areca nut moisture content. Results: A quantitative model for areca nut moisture content was acquired, with the coefficient of determination of 0.994 2, the root mean square of the calibration error (RMSEC) of 0.50, the coefficient of determination for the validation set of 0.986 7, the root mean square of the prediction error (RMSEP) of 0.68. Conclusion: This method is simple, fast, safe, practical, and accurate, suitable for the rapid determination of moisture content in materials containing high cellulose and lignin.

Publication Date

3-27-2024

First Page

69

Last Page

73

DOI

10.13652/j.spjx.1003.5788.2023.60176

References

[1] 王乐意, 李长河, 刘明政, 等. 中药材干燥技术与装备研究现状[J/OL]. 农业工程学报. (2023-12-22) [2023-12-25]. http://kns.cnki.net/kcms/detail/11.2047.S.20231221.0942.002.html. WANG L Y, LI C H, LIU M Z, et al. Chinese herbal medicine drying technology and equipment research[J/OL]. Journal of Agricultural Engineering. (2023-12-22) [2023-12-25]. http://kns.cnki.net/kcms/detail/11.2047.S.20231221.0942.002.html.
[2] 邓建阳, 李浩, 蒋雪薇. 等. 食用槟榔加工工艺及其化学与微生物污染研究进展[J]. 食品与机械, 2018, 34(1): 173-176. DENG J Y, LI H, JIANG X W, et al. Research progress on processing technology and chemical and microbial contamination of edible betel nut[J]. Food & Machinery, 2018, 34(1): 173-176.
[3] 刘艳. 对中药现代化及中药国际化发展的思考[J]. 现代医学与健康研究电子杂志, 2018, 2(18): 163, 165. LIU Y. Thinking on the modernization and internationalization of traditional Chinese Medicine[J]. Journal of Modern Medicine and Health Research, 2018, 2(18): 163, 165.
[4] 阚相成. 不同温度下木材含水率近红外光谱无损检测研究[D]. 哈尔滨: 东北林业大学, 2022: 1-5. KAN X C. Nir nondestructive testing of wood moisture content under different temperature research[D]. Harbin: The Northeast Forestry University, 2022: 1-5.
[5] 杨舒涵. 基于近红外的棉花回潮率检测系统设计与研究[D]. 西安: 西安理工大学, 2021: 1-3. YANG S H. Based on near infrared moisture regain of cotton testing system design and research[D]. Xi'an: Xi'an Polytechnic University, 2021: 1-3.
[6] 钱晓庆, 朱萌, 石钢鹏, 等. 冻融循环过程中鮰鱼片K值的近红外预测模型研究[J]. 食品与机械, 2021, 37(1): 137-142. QIAN X Q, ZHU M, SHI G P, et al. Research on near-infrared prediction model of K value of channel catfish filet during freeze-thaw cycle[J]. Food & Machinery, 2021, 37(1): 137-142.
[7] 曹念念, 刘强, 彭菁, 等. 基于近红外光谱技术的黄桃脆片可溶性固形物和硬度定量检测方法[J]. 食品与机械, 2021, 37(3): 51-57. CAO N N, LIU Q, PENG J, et al. Quantitative detection method of soluble solids and hardness of yellow peach chips based on near-infrared spectroscopy[J]. Food & Machinery, 2021, 37(3): 51-57.
[8] 褚小立, 史云颖, 陈瀑, 等. 近五年我国近红外光谱分析技术研究与应用进展[J]. 分析测试学报, 2019, 38(5): 603-611. CHU X L, SHI Y Y, CHEN P, et al. Advances in research and application of near-infrared spectroscopy in China in recent five years[J]. Chinese Journal of Analytical and Testing, 2019, 38(5): 603-611.
[9] 孙晓荣, 郑冬钰, 刘翠玲, 等. 小麦粉品质在线无损快速检测系统设计与实现[J]. 食品与机械, 2022, 38(12): 87-91. SUN X R, ZHENG D Y, LIU C L, et al. Design and implementation of online non-damage and rapid testing system for wheat flour quality[J]. Food & Machinery, 2021, 38(12): 87-91.
[10] 夏长杙, 冉乾松, 李芮, 等. 红茶发酵过程中品质评价技术研究进展[J]. 食品与机械, 2023, 39(3): 233-240. XIA C Y, RAN Q S, LI R, et al. Research progress on quality evaluation technology of black tea during fermentation[J]. Food & Machinery, 2023, 39(3): 233-240.
[11] 黄积微, 李洋, 袁迪, 等. 基于便携式近红外光谱仪的蓝莓热风干燥过程模型的建立[J]. 食品与发酵工业, 2023, 49(16): 283-290. HUANG J W, LI Y, YUAN D, et al. Establishment of blueberry hot air drying process model based on portable near infrared spectrometer[J]. Food and Fermentation Industry, 2023, 49(16): 283-290.
[12] 姜洪喆, 杨雪松, 李兴鹏, 等. 油茶果自然霉变程度的可见/近红外与中短波近红外光谱检测[J]. 食品科学, 2023, 44(4): 272-277. JIANG H Z, YANG X S, LI X P, et al. Detection of natural mildew degree of Camellia oleifera fruit by visible/near infrared and short wave near infrared spectroscopy[J]. Food Science, 2023, 44(4): 272-277.
[13] 黄志伟, 郭拓, 黄文静, 等. 近红外光谱技术在名贵中药材质量评价中的研究进展[J]. 中草药, 2022, 53(20): 6 328-6 336. HUANG Z W, GUO T, HUANG W J, et al. Research progress of near-infrared spectroscopy in quality evaluation of rare Chinese medicinal materials[J]. Chinese Herbal Medicine, 2022, 53(20): 6 328-6 336.
[14] 褚小立, 陈瀑, 李敬岩, 等. 近红外光谱分析技术的最新进展与展望[J]. 分析测试学报, 2020, 39(10): 1 181-1 188. CHU X L, CHEN P, LI J Y, et al. Recent progress and prospect of near-infrared spectroscopy[J]. Chinese Journal of Analysis and Testing, 2020, 39(10): 1 181-1 188.
[15] 张静, 郭榛, 王思花, 等. 便携式近红外和可见光光谱仪检测水稻水分含量方法比较研究[J]. 光谱学与光谱分析, 2023, 43(7): 2 059-2 066. ZHANG J, GUO Z, WANG S H, et al. Comparative study on the detection methods of rice water content by portable near-infrared and visible light spectrometers[J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2 059-2 066.
[16] 苏鹏飞, 刘丽丽, 闫宗科, 等. 基于近红外高粱水分的快速分析研究[J]. 酿酒, 2021, 48(1): 87-90. SU P F, LIU L L, YAN Z K, et al. Rapid analysis of sorghum moisture based on near infrared[J]. Brewing, 2021, 48(1): 87-90.
[17] 王超, 王春圻, 徐黎莉, 等. 基于近红外光谱的玉米水分含量快速检测研究[J]. 黑龙江八一农垦大学学报, 2022, 34(4): 93-99. WANG C, WANG C Q, XU L L, et al. Rapid detection of corn moisture content based on near-infrared spectroscopy[J]. Journal of Heilongjiang Baiyi Agricultural Ken University, 2021, 34(4): 93-99.
[18] 赵艳莉, 赵倩, 李志强. 基于近红外光谱的SSA-RELM的菠萝含水率快速检测[J]. 食品与机械, 2023, 39(11): 79-86. ZHAO Y L, ZHAO Q, LI Z Q. Rapid detection of water content of pineapple by SSA-RELM based on near-infrared spectroscopy[J]. Food & Machinery, 2023, 39(11): 79-86.
[19] 段学, 赵小波, 邹胜琼, 等. 近红外分析技术快速检测白酒基酒中的总酯含量[J]. 酿酒科技, 2021(3): 105-108. DUAN X, ZHAO X B, ZOU S Q, et al. Rapid detection of total ester content in liquor base liquor by near infrared analysis[J]. Brewing Technology, 2021(3): 105-108.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.