•  
  •  
 

Corresponding Author(s)

武文斌(1959—),男,河南工业大学教授,博士生导师。E-mail:wubenbing100@163.com

Abstract

Objective: To achieve surface wear life prediction of abrasive blast rollers of grinding machines. Methods: The wear images of the grinding roller surface were acquired by the built image acquisition system, and the texture parameters such as second order moments, entropy value, contrast and correlation in the wear cycle of the grinding roller were obtained based on the grey scale co-generation matrix algorithm, and the obtained texture feature parameters were input into the constructed PSO-based LS-SVM algorithm model to finally predict the wear life of the blast roller. Results: The particle swarm algorithm could optimize the penalty factor and kernel parameters of LS-SVM well, and the PSO-LS-SVM algorithm was far superior to the LS-SVM algorithm model. The wear state of the blast roller surface of the mill could be accurately identified using the PSO-LS-SVM algorithm. Conclusion: The system can accurately predict the service life of the blast rollers.

Publication Date

3-27-2024

First Page

104

Last Page

108

DOI

10.13652/j.spjx.1003.5788.2023.80364

References

[1] 黄奇鹏, 武文斌, 高杨杨, 等. 磨粉机磨辊磨损对制粉影响研究综述[J]. 粮食加工, 2020, 45(5): 4-7. HUANG Q P, WU W B, GAO Y Y, et al. Review of the impact roller wear on the milling process[J]. Grain Processing, 2020, 45(5): 4-7.
[2] 刘培康, 武文斌, 侯宁沛, 等. 磨粉机喷砂辊表面形貌描述指标研究[J]. 粮食加工, 2022, 47(2): 9-12. LIU P K, WU W B, HOU N P, et al. Research on the descriptive indexes of the surface topography of the sand blasting roll of the pulverizer[J]. Grain Processing, 2022, 47(2): 9-12.
[3] 刘培康, 武文斌, 王雪峰, 等. 基于GLCM的磨粉机喷砂辊表面图像纹理特征分析[J]. 粮食加工, 2022, 47(5): 11-15. LIU P K, WU W B, WANG X F, et al. Analysis of texture features of surface image of sandblasting roller of mill based on GLCM[J]. Grain Processing, 2022, 47(5): 11-15.
[4] 窦建明. 立铣刀磨损状态与磨损量在线监测及预测方法研究[D]. 西安: 长安大学, 2020: 26-28. DOU J M. Research on online monitoring and prediction method for wear condition and wear value of end mill cutter[D]. Xi'an: Chang'an University, 2020: 26-28.
[5] 韩俊华, 吴其胜. 人工神经网络在摩擦材料制备中的应用[J]. 材料科学与工程学报, 2011, 29(5): 786-789. HAN J H, WU Q S. Usage of artificial neural network in the preparation of friction materials[J]. Journal of Materials Science & Engineering, 2011, 29(5): 786-789.
[6] 聂鹏, 马尧, 郭勇翼, 等. 基于PSO优化LS-SVM的铣削刀具磨损状态监测方法研究[J]. 振动与冲击, 2022, 41(22): 137-143. NIE P, MA Y, GUO Y Y, et al. Monitoring method of milling tool wear status based on IPSO optimized LS-SVM[J]. Journal of Vibration and Shock, 2022, 41(22): 137-143.
[7] 单志强. 基于模糊C-均值聚类算法的柴油机磨损模式识别[J]. 机械设计与制造, 2008(12): 198-200. SHAN Z Q. Pattern recognition method for wear mode of diesel engine basedon the fuzzy c-mean clustering[J]. Machinery Design & Manufacture, 2008(12): 198-200.
[8] 赵保伟. 基于电流与振动的异步电机断条故障诊断研究[D]. 郑州: 郑州轻工业学院, 2018: 67-69. ZHAO B W. Study on broken bar fault diagnosis of asynchronous motor based on current and vibration[D]. Zhengzhou: Zhengzhou Institute of Light Industry, 2018: 67-69.
[9] 关山, 庞弘阳, 宋伟杰, 等. 基于MF-DFA特征和LS-SVM算法的刀具磨损状态识别[J]. 农业工程学报, 2018, 34(14): 61-68. GUAN S, PANG H Y, SONG W J, et al. Cutting tool wear recognition based on MF-DFA feature and LS-SVM algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 61-68.
[10] 刘成颖, 吴昊, 王立平, 等. 基于PSO优化LS-SVM的刀具磨损状态识别[J]. 清华大学学报(自然科学版), 2017, 57(9): 975-979. LIU C Y, WU H, WANG L P, et al. Tool wear state recognition based on LS-SVM with the PSO algorithm[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(9): 975-979.
[11] 关山, 聂鹏. 在线金属切削刀具磨损状态监测研究的回顾与展望Ⅲ: 模式识别方法[J]. 机床与液压, 2012, 40(3): 148-153. GUAN S, NIE P. The review and perspective of the research of on-line and indirect metal cutting tool condition monitoring Ⅲ: Pattern recognition methods[J]. Machine Tool & Hydraulics, 2012, 40(3): 148-153.
[12] 杨先勇, 周晓军, 张文斌, 等. 基于局域波法和KPCA-LSSVM的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2010, 44(8): 1 519-1 524. YANG X Y, ZHOU X J, ZHANG W B, et al. Rolling bearing fault diagnosis based on local wave method and KPCA-LSSVM[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(8): 1 519-1 524.
[13] HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. Studies in Media and Communication, 1973, SMC-3(6): 610-621.
[14] 刘培康. 磨粉机喷砂辊磨损形貌图像研究及测量仪开发[D]. 郑州: 河南工业大学, 2022: 14-15. LIU P K. Wear Surface morphology image of sandblasting roller and development of optical test[D]. Zhengzhou: Henan University of Technology, 2022: 14-15.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.