•  
  •  
 

Abstract

Objective: Taking Aksu apples as an example, a joint image optimal feature extraction and improved RBF neural network learning apple weight estimation method is designed to overcome the high cost and large error of manual grading and weighing. Methods: Firstly, an apple image acquisition system was established to obtain apple foreground image information. Secondly, the optimal subset extraction strategy for apple image feature sets was designed, by transforming the process of extracting the optimal subset into an objective function optimization problem, and an improved discrete locust optimization algorithm was designed to obtain the optimal apple image feature subset. Finally, a weight estimation model for apples based on RBF neural network learning was constructed, with the optimal feature subset as network input. The locust optimization algorithm was used to optimize the configuration of RBF neural network hyperparameters, to achieve effective estimation of apple weight. Results: The proposed apple weight estimation method had higher accuracy, with an average relative error rate of 1.23% for weight estimation. Conclusion: This method can effectively achieve apple weight estimation and can also be applied to other fruits with similar axisymmetric shapes for weight estimation.

Publication Date

3-27-2024

First Page

125

Last Page

130,183

DOI

10.13652/j.spjx.1003.5788.2023.60140

References

[1] 李学军, 程红. 基于决策融合的苹果分级检测关键技术研究[J]. 食品与机械, 2020, 36(12): 136-140. LI X J, CHENG H. Study on key technologies for apple grading detection based on decision fusion method[J]. Food & Machinery, 2020, 36(12): 136-140.
[2] 毕淑慧, 李雪, 申涛, 等. 基于多模型证据融合的苹果分类方法[J]. 农业工程学报, 2022, 38(13): 141-149. BI S H, LI X, SHEN T, et al. Apple classification based on evidence theory and multiple models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 141-149.
[3] 林海波, 卢元栋, 丁荣诚, 等. 基于图像处理与改进SVM的苹果多特征融合分级方法[J]. 山东农业科学, 2022, 54(6): 141-149. LI H B, LU Y D, DING R C, et al. A multi-feature fusion classification method for apple based on image processing and improved SVM[J]. Shandong Agricultural Sciences, 2022, 54(6): 141-149.
[4] 孙丰刚, 王云露, 兰鹏 等. 基于改进 YOLOv5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报, 2022, 38(11): 171-179. SUN F G, WANG Y L, LAN P, et al. Identification of apple fruit diseases using improved YOLOv5s and transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 171-179.
[5] 何婷婷, 李志伟, 张馨, 等. 基于图像处理的番茄重量预测[J]. 食品与机械, 2022, 38(10): 17-23. HE T T, LI Z W, ZHANG X, et al. Tomato eight prediction based on image processing[J]. Food & Machinery, 2022, 38(10): 17-23.
[6] 张立杰, 周舒骅, 李娜, 等. 基于改进SSD卷积神经网络的苹果定位与分级方法[J]. 农业机械学报, 2023, 54(6): 223-232. ZHANG L J, ZHOU S H, LI N, et al. Apple location and classification based on improved SSD convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 223-232.
[7] HUYNH T, TRAN L, DAO S. Realtime size and mass estimiation of slender axi-symmetric fruit/vegetable using a single top view image[J]. Sensors, 2020, 20(18): 5 406.
[8] 李颀, 胡家坤. 基于机器视觉的苹果在线分级[J]. 食品与机械, 2020, 36(8): 123-128, 153. LI X, HU J K. Research on apple online classification based on machine vision[J]. Food & Machinery, 2020, 36(8): 123-128, 153.
[9] 何进荣, 石延新, 刘斌, 等. 基于DXNet模型的富士苹果外部品质分级方法研究[J]. 农业机械学报, 2021, 52(7): 379-385. HE J R, SHI Y X, LIU B, et al. External quality grading method of fuji apple based on deep learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 379-385.
[10] DEMIR B, ESKI I, GRBZ F, et al. Prediction of walnut mass based on physical attributes by artificial neural network (ANN)[J]. Erwerbs-Obstbau, 2020, 62: 47-56.
[11] 涂伟沪, 蔡玲霞, 李学军. 基于改进蝗虫算法优化Canny算子的鸡蛋裂纹图像检测[J]. 食品与机械, 2022, 38(2): 167-172, 202. TU W H, CAI L X, LI X J. Egg crack image detection method based on improved grasshopper optimization algorithm and canny operator[J]. Food & Machinery, 2022, 38(2): 167-172, 202.
[12] IV A, ADK B, EI C, et al. Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel diesel blends[J]. Case Studies in Thermal Engineering, 2022, 15(4): 1 078-1 156.
[13] DWIWEDI S. Detecting anonymous attacks in wireless communication medium using adaptive grasshopper optimization algorithm[J]. Cognitive Systems Research, 2021, 69: 1-21.
[14] 何庆, 林杰, 徐航. 混合柯西变异和均匀分布的蝗虫优化算法[J]. 控制与决策, 2021, 36(7): 1 558-1 568. HE Q, LIN J, XU H. Hybrid cauchy mutation and uniform distribution of grasshopper optimization algorithm[J]. Control and Decision, 2021, 36(7): 1 558-1 568.
[15] 叶林, 路朋, 赵永宁, 等. 含风电电力系统有功功率模型预测控制方法综述[J]. 中国电机工程学报, 2021, 41(18): 6 181-6 198. YE L, LU P, ZHAO Y N, et al. Review of model predictive control for power system with large-scale wind power grid-connected[J]. Proceedings of the CSEE, 2021, 41(18): 6 181-6 198.
[16] 邓鹏, 刘敏. 基于改进聚类和RBF神经网络的台区电网线损计算研究[J]. 智慧电力, 2021, 49(2): 107-113. DENG P, LIU M. Power line loss calculation in low voltage region based on improved clustering algorithm and RBF neural network[J]. Smart Power, 2021, 49(2): 107-113.
[17] 吴兴宇, 江兵兵, 吕胜飞, 等. 基于马尔科夫边界发现的因果特征选择算法综述[J]. 模式识别与人工智能, 2022, 35(5): 422-438. WU X Y, JIANG B B, LU S F, et al. A survey on causal feature selection based on markov boundary discovery[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(5): 422-438.
[18] 于飞, 樊清川, 宣敏. 基于蝗虫优化Bi-LSTM网络的电机轴承故障预测[J]. 电机与控制学报, 2022, 26(6): 9-17. YU F, PAN Q C, XUAN M. Motor bearing fault prediction based on grasshopper optimized Bi-LSTM network[J]. Electric Machines and Control, 2022, 26(6): 9-17.
[19] 张立杰, 周舒骅, 李娜, 等. 基于改进SSD卷积神经网络的苹果定位与分级方法[J]. 农业机械学报, 2023, 54(6): 223-232. ZHANG L J, ZHOU S H, LI N, et al. Applelocation and classification based on improved SSD convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 223-232.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.