•  
  •  
 

Corresponding Author(s)

蒋卓(1986—),男,华南农业大学副教授,博士。E-mail:jiangzhuo@scau.edu.cn

Abstract

Microfluidic chips are driven by microfluidic pumps and controlled by microfluidic valves in microfluidic systems to achieve accurate manipulation of microfluidics. With the continuous improvement of microfluidic chip integration, liquid channels have become more complex and have smaller volumes. How to achieve fluid drive and control at the micro scale has become a key focus in chip design. The paper elaborates on the current research status, key technologies, and development trends of micro pumps and micro valves both domestically and internationally, aiming to provide reference and guidance for the development of related industries and technological research.

Publication Date

3-27-2024

First Page

9

Last Page

20,27

DOI

10.13652/j.spjx.1003.5788.2023.81159

References

[1] CHOI C H, KIM J, NAM J O. Microfluidic design of complex emulsions[J]. Chemphyschem, 2014, 15(1): 21-29.
[2] ULLAKKO K, WENDELL L, SMITH A, et al. A magnetic shape memory micropump: Contact-free, and compatible with PCR and human DNA profiling[J]. Smart Materials and Structures, 2012, 21(11): 115020.
[3] DUAN B, GUO T H, LUO M Q, et al. A mechanical micropump for electronic cooling[C]// Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando: IEEE, 2014: 1 038-1 042.
[4] MAHNAMA A, NOURBAKHSH A, GHORBANIASL G. A survey on the applications of implantable micropump systems in drug delivery[J]. Current Drug Delivery, 2014, 11(1): 123-131.
[5] 宋扬, 林金明. 微流控芯片上单细胞操控与分析方法研究进展[J]. 中国科学: 化学, 2023, 53(8): 1 472-1 493. SONG Y, LIN J M. Research progress of single-cell manipulation and analysis methods on microfluidic chips [J]. Science in China: Chemistry, 2023, 53(8): 1 472-1 493.
[6] 赵亮, 黄岩谊. 微流控技术与芯片实验室[J]. 大学化学, 2011, 26(3): 1-8. ZHAO L, HUANG Y Y. Microfluidic technology and lab-on-a-chip[J]. University Chemistry, 2011, 26(3): 1-8.
[7] 李勇, 周兆英, 叶雄英. 微型泵和微型阀的进展[J]. 仪器仪表学报, 1996(1): 56-60. LI Y, ZHOU Z Y, YE X Y. Progress of micro-pump and micro-valve[J]. Chinese Journal of Scientific Instrument, 1996(1): 56-60.
[8] 从亚磊. 基于微型泵驱动的微流控系统设计[D]. 郑州: 郑州大学, 2021: 15. CONG Y L. Design of microfluidic system based on micro pump drive[D]. Zhengzhou: Zhengzhou University, 2021: 15.
[9] MOHITH S, KARANTH P N, KULKARNIS M. Recent trends in mechanical micropumps and their applications, A review[J]. Mechatronics, 2019, 60: 34-55.
[10] LASER D J, SANTIAGO J G. A review of micropumps[J]. Journal of Micromechanics & Microengineering, 2004, 14(6): R35-R64.
[11] LUDWIGS A. Micropumps-past, progress and future prospects[J]. Sensors and Actuators, 2005, 105(1): 28-38.
[12] 杨春光. 用于微流控芯片细胞分析的流体控制系统研究[D]. 沈阳: 东北大学, 2012: 23. YANG C G. Research on fluid control system for microfluidic chip cell analysis[D]. Shenyang: Northeastern University, 2012: 23.
[13] LECLERC E, DAVID B, GRISCOM L, et al. Study of osteoblastic cells in a microfluidic environment[J]. Biomaterials, 2006, 27(4): 586-595.
[14] 莫丹. 基于气泵的连续反应体系中多试剂驱动系统的研究[D]. 南京: 东南大学, 2017: 20. MO D. Research on multi-reagent driving system in continuous reaction system based on air pump[D]. Nanjing: Southeast University, 2017: 20.
[15] 王亚飞, 刘伟, 赵亮, 等. 离心泵综合性能的提高[J]. 液压气动与密封, 2023, 43(1): 99-102. WANG Y F, LIU W, ZHAO L, et al. Improvement of comprehensive performance of centrifugal pump[J]. Hydraulics Pneumatics & Seals, 2023, 43(1): 99-102.
[16] BECKERS G, DEHEZ B. Design and modeling of an electromagnetic peristaltic micropump[C]// International Conference on Advanced Intelligent Mechatronics. Newyork: IEEE, 2014: 180-185.
[17] LAZAR M L, KARGERB L. Multiple open-channel electroosmotic pumpingsystem for microfluidic sample handling[J]. Anal Chem, 2002, 74: 6 259-6 269.
[18] LIU S R, PUQ S, LU J J. Electric field-decoupled electroosmotic pump formicrofluidic devices[J]. Journal of Chromatography A, 2003, 1 013: 57-64.
[19] 段钰彤. 气动驱动微流控进样技术研究[D]. 南京: 南京理工大学, 2019: 55. DUAN Y T. Research on pneumatic driven microfluidic injection technology[D]. Nanjing: Nanjing University of Science and Technology, 2019: 55.
[20] BERTHIER E, DOSTIE A M, LEE U N, et al. Open microfluidic capillary systems[J]. Analytical Chemistry, 2019, 91(14): 8 739-8 750.
[21] KHEIRI S, CHEN Z, YAKAVETS I, et al. Integrating spheroid-on-a-chip with tubeless rocker platform: A high-throughput biological screening platform[J]. Biotechnology Journal, 2023, 18(10): 2200621.
[22] 徐章润, 唐小燕, 王建华, 等. 重力驱动小型滴汞泵的研究[J]. 东北大学学报(自然科学版), 2008(3): 449-452, 149. XU Z R, TANG X Y, WANG J H, et al. Research on small drop mercury pump driven by gravity[J]. Journal of Northeastern University (Natural Science Edition), 2008(3): 449-452, 149.
[23] 刘本东, 孙建闯, 侯岳鹏, 等. 热气泡式微流体驱动器的研究进展[J]. 北京工业大学学报, 2016, 42(8): 1 129-1 137. LIU B D, SUN J C, HOU Y P, et al. Research progress of hot-gas bubble microfluidic actuator[J]. Journal of Beijing University of Technology, 2016, 42(8): 1 129-1 137.
[24] TSENG L Y, YANG A S, LEEC Y, et al. Investigation of a piezoelectric valveless micropump with an integrated stainless-steel diffuser/nozzle bulge-piece design[J]. Smart Materials & Structures, 2013, 22(8): 085023.
[25] LEE S C, HUR S, KANG D, et al. The performance of bioinspired valveless piezoelectric micropump with respect to viscosity change[J]. Bioinspiration & Biomimetics, 2016, 11(3): 036006.
[26] KIM H, ASTLE AA, NAJAFI K, et al. An integrated electrostatic peristaltic 18-Stage gas micropump with active microvalves[J]. Journal of Microelectromechanical Systems, 2015, 24(1): 192-206.
[27] PICCINI M E, TOWEB C. A shape memory alloy microvalve with flow sensing[J]. Sensors & Actuators A Physical, 2006, 128(2): 344-349.
[28] CHEN M, XING X, LIU Z, et al. Photodeformable polymer material: Towards light-driven micropump applications[J]. Applied Physics A, 2010, 100(1): 39-43.
[29] JUN D H, SIM W Y, YANG S S. A novel constant delivery thermopneumatic micropump using surface tensions[J]. Sensors and Actuators A: Physical, 2007, 139(1/2): 210-215.
[30] IAKOVLEV A P, EROFEEV A S, GORELKIN P V. Novel pumping methods for microfluidic devices: A comprehensive review[J]. Biosensors, 2022, 12(11): 956.
[31] MATSUBARA T, CHOI J S, KIM D H, et al. A microfabricated pistonless syringe pump driven by electro-conjugate fluid with leakless on/off microvalves[J]. Small, 2022, 18(15): 2106221.
[32] ZHANG X J, XIA K, JI A M. A portable plug-and-play syringe pump using passive valves for microfluidic applications[J]. Sensors and Actuators B: Chemical, 2020, 304: 127331.
[33] GAO W, LIU M, CHEN S, et al. Droplet microfluidics with gravity-driven overflow system[J]. Chemical Engineering Journal, 2019, 362: 169-175.
[34] MA T, SUN S, LI B, et al. Piezoelectric peristaltic micropump integrated on a microfluidicchip[J]. Sensors and Actuators A: Physical, 2019, 292: 90-96.
[35] XIANG J, CAI Z, ZHANG Y, et al. A micro-cam actuated linear peristaltic pump for microfluidic applications[J]. Sensors and Actuators A: Physical, 2016, 251: 20-25.
[36] SIN A, REARDON C F, SHULER M L. A self-priming microfluidic diaphragm pump capable of recirculation fabricated by combining soft lithography and traditional machining[J]. Biotechnology and Bioengineering, 2004, 85(3): 359-363.
[37] JI J, QIAN C, CHEN S, et al. A serial piezoelectric gas pump with variable chamber height[J]. Sensors and Actuators A: Physical, 2021, 331: 112912.
[38] ZHOU M, QI Z, YANG Z, et al. Miniaturized soft centrifugal pumps with magnetic levitation for fluid handling[J]. Science Advances, 2021, 7(44): 7 203.
[39] MATAR M, AL-HALHOULI A T, DIETZEL A, et al. Microfabricated centrifugal pump driven by an integrated synchronous micromotor[J]. Microsystem Technologies, 2017, 23: 2 475-2 483.
[40] LI H, WANG W, XU T, et al. High performance electromagnetic micropump with bio-inspired synchronous valves for integrated microfluidics[J]. Sensors and Actuators A: Physical, 2023, 360: 114568.
[41] RUSLI M Q A, CHEE P S, ARSAT R, et al. Electromagnetic actuation dual-chamber bidirectional flowmicropump[J]. Sensors and Actuators A: Physical, 2018, 282: 17-27.
[42] 梁照. 表面差异化处理的离心微流控芯片及用于蛋白质检测初步研究[D]. 重庆: 重庆大学, 2021: 25. LIANG Z. Preliminary study on centrifugal microfluidic chip with differentiated surface treatment and its application in protein detection[D]. Chongqing: Chongqing University, 2021: 25.
[43] NAKA Y, FUCHIWAKI M, TANAKA K. Amicropump driven by a polypyrrole-based conducting polymer soft actuator[J]. Polymer international, 2010, 59(3): 352-356.
[44] ZHONG Y, FILIPPINI D, JAGER E W H. A versatile flexible polymer actuator system for pumps, valves, and injectors enabling fully disposable active microfluidics[J]. Advanced Materials Technologies, 2021, 6(1): 2000769.
[45] LEMOFFA V, LEEA P. An AC magnetobydrodynamic micropump[J]. Sens Actuators B, 2000, 63: 178-185.
[46] AHNS H, KIMY K. Fabrication and experimcnt of a planar micro ion drag pump[J]. Sens Actuators A, 1998, 70: 1-5.
[47] SILVERIO V, CANANE P A G, MARTINS T A, et al. Development of a microfluidicelectroosmosis pump on a chip for steady and continuous fluid delivery[J]. Biomedical Engineering/Biomedizinische Technik, 2023, 68(1): 79-90.
[48] LIU J, CHEN J, DAI J, et al.Simple electroosmotic pump and active microfluidics with asymmetrically coated microelectrodes[J]. Small Science, 2023, 3(9): 2300026.
[49] UVAROV I V, LEMEKHOV SS, MELENEV A E, et al. Exploding microbubbles driving a simple electrochemical micropump[J]. Journal of Micromechanics and Microengineering, 2017, 27(10): 105009.
[50] GUO G, WU X Y, LIU D M, et al. A self-regulated microfluidic device with thermal bubble micropumps[J]. Micromachines, 2022, 13(10): 1 620.
[51] YE W Q, LIU X P, MA R F, et al. Open-channel microfluidic chip based on shape memory polymer for controllable liquid transport[J]. Lab on a Chip, 2023, 23(8): 2 068-2 074.
[52] XING Y, NOURMOHAMMADZADEH M, ELIAS J E M, et al. A pumpless microfluidic device driven by surface tension for pancreatic islet analysis[J]. Biomedical Microdevices, 2016, 18: 1-9.
[53] 唐淑颖. 基于微流控乳液模板的有序多孔材料的制备研究[D]. 南京: 东南大学, 2017: 33. TANG S Y. Preparation of ordered porous materials based on microfluidic emulsion template[D]. Nanjing: Southeast University, 2017: 33.
[54] 刘宇, GIUSEPPINA S. 基因检测微流控芯片的研究、应用与发展[J]. 传感器与微系统, 2022, 41(7): 1-4, 20. LIU Y, GIUSEPPINA S. Research, application and development of microfluidic chip for factor detection[J]. Sensors and Microsystems, 2022, 41(7): 1-4, 20.
[55] 王蕾. 用于微流控芯片液体驱动的仿叶结构微泵研究[D]. 大连: 大连理工大学, 2017: 34-35. WANG L. Research on vane structure micropump for liquid driven microfluidic chip[D]. Dalian: Dalian University of Technology, 2017: 34-35.
[56] 胡治江. 微流控芯片中磁驱动微机械的制备应用研究[D]. 合肥: 中国科学技术大学, 2019: 21. HU Z J. Research on preparation and application of magnetic-driven micromachinery in microfluidic chips[D]. Hefei: University of Science and Technology of China, 2019: 21.
[57] CHEN X J, LIAN H S, MO D Y, et al. Self-supporting 3D printed flexible liquid metal electrodes for electrostatically microfluidic valves[J]. Journal of Micromechanics and Microengineering, 2021, 31(11): 115005.
[58] ZHOU Y, YU Z, WU M, et al. Single-cell sorting using integrated pneumatic valve droplet microfluidic chip[J]. Talanta, 2023, 253: 124044.
[59] CHIESA E, DORATI R, MODENA T, et al. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles[J]. Int J Pharm, 2018, 536(1): 165-177.
[60] ZHONG R T, WANG M Y, LIN B C. Automated and parallel microfluidic DNA extraction with integrated pneumatic microvalves/pumps and reusable open-channel columns[J]. Electrophoresis, 2023, 44(9/10): 825-834.
[61] AGNIHOTRI S N, UGOLINI G S, SULLIVANM R, et al. Droplet microfluidics for functional temporal analysis and cell recovery on demand using microvalves: Application in immunotherapies for cancer[J]. Lab on a Chip, 2022, 22(17): 3 258-3 267.
[62] QIAN J Y, WU J Y, GAO Z X, et al. Hydrogen decompression analysis by multi-stage Tesla valves for hydrogen fuel cell[J]. Int J Hydrogen Energy, 2019, 44: 13 666-13 674.
[63] PEREIRA I C F, VAN MECHELEN R J S, WYSSH M, et al. Magnetically actuated glaucoma drainage device for regulating intraocular pressure after implantation[J]. Microsystems & Nanoengineering, 2023, 9(1): 92.
[64] ANJEWIERDEN D, LIDDIARD G A, GALE B K. An electrostaticmicrovalve for pneumatic control of microfluidic systems[J]. Journal of Micromechanics and Microengineering, 2012, 22(2): 025019.
[65] ATIK A C, ZKAN M D, ZGR E, et al. Modeling and fabrication of electrostatically actuated diaphragms for on-chip valving of MEMS-compatible microfluidic systems[J]. Journal of Micromechanics and Microengineering, 2020, 30(11): 115001.
[66] CHEN S, LU S, LIU Y, et al. A normally-closed piezoelectric micro-valve with flexible stopper[J].Aip Advances, 2016, 6(4): 045112.
[67] DURASIEWICZ C P, GNTNER S T, MAIER P K, et al. Piezoelectric normally open microvalve with multiple valve seat trenches for medical applications[J]. Applied Sciences, 2021, 11(19): 9 252.
[68] CHEN Y C, TIAN Y, XU Z, et al. Microfluidic droplet sorting using integrated bilayer micro-valves[J]. Applied Physics Letters, 2016, 109(14): 143510.
[69] KOHL M, SKROBANEK K D, MIYAZAKI S. Development of stress-optimised shape memory microvalves[J]. Sensors and Actuators A: Physical, 1999, 72(3): 243-250.
[70] LIU Y, RAUCH C B, STEVENS R L, et al. DNA amplification and hybridization assays in integrated plastic monolithic devices[J]. Analytical Chemistry, 2002, 74(13): 3 063-3 070.
[71] SELVAGANAPATHY P, CARLEN E T, MASTRANGELOC H. Electrothermally actuated inline microfluidic valve[J]. Sensors and Actuators A: Physical, 2003, 104(3): 275-282.
[72] KAMINAGA M, ISHIDA T, OMATA T. Microvalve with trapezoid-shaped cross-section for deep microchannels[J]. Micromachines, 2021, 12(11): 1 403.
[73] NITI S M A. Characteristics and fabrication of NiTi/Si diaphragm micropump[J]. Biomaterials, 2001, 22(18): 2 475-2 480.
[74] NGUYEN N T, TRUONG T Q, WONG K K, et al. Micro check valves for integration into polymeric microfluidic devices[J]. Journal of Micromechanics and Microengineering, 2003, 14(1): 69.
[75] GOTT V L, ALEJO D E, CAMERON D E. Mechanical heart valves: 50 years of evolution[J]. The Annals of Thoracic Surgery, 2003, 76(6): S2 230-S2 239.
[76] ZHANG X, OSEYEMI A E. Microfluidic passive valve with ultra-low threshold pressure for high-throughput liquid delivery[J]. Micromachines, 2019, 10(12): 798.
[77] AZIZIAN P, CASALS-TERR J, RICARTJ, et al. Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics[J]. Microsystems & Nanoengineering, 2023, 9(1): 91.
[78] 程敏. 硅胶表面裂纹应变微阀的构筑及其在微流控芯片中的应用[D]. 湘潭: 湘潭大学, 2020: 17. CHEN M. Construction of silica gel surface crack strain microvalve and its application in microfluidic chip[D]. Xiangtan: Xiangtan University, 2020: 17.
[79] 黄林奎. 基于微流控芯片的细胞培养控制系统研究[D]. 镇江: 江苏大学, 2019: 45. HUANG L K. Research on cell culture control system based on microfluidic chip[D]. Zhenjiang: Jiangsu University, 2019: 45.
[80] 赵巍, 张东旭, 王琦琛, 等. 微流控芯片通用性微阀的设计实现与性能[J]. 科学技术与工程, 2020, 20(33): 13 667-13 672. ZHAO W, ZHANG D X, WANG Q C, et al, Design, implementation and performance of universal microvalve with microfluidic chip[J]. Science Technology and Engineering, 2019, 20(33): 13 667-13 672.
[81] 赵巍. 微流控芯片机械式旋转微阀的设计与实现[D]. 厦门: 厦门大学, 2020: 47. ZHAO W. Design and implementation of mechanical rotary microvalve with microfluidic chip[D]. Xiamen: Xiamen University, 2020: 47.
[82] BURD-MASFERRER M, DAZ-GONZLEZ M, SANCHIS A, et al. Compact microfluidic platform with LED light-actuated valves for enzyme-linked immunosorbent assay automation[J]. Biosensors, 2022, 12(5): 280.
[83] JIN S H, LEE B, KIMJ S, et al. Improvement strategy of a microfluidic sorter using a pneumatic bilayer valve[J]. Chemical Engineering Science, 2021, 245: 116834.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.