Abstract
Objective: Explored the composition and content of phenolic compounds in tartary buckwheat wine lees, and study their antioxidant activity. Methods: Phenolic compounds in tartary buckwheat wine lees were analyzed by HPLC and LC-MS. And evaluating its antioxidant activity. Results: 7 phenolic compounds were identified from tartary buckwheat wine lees, including 5 flavonoids, with the highest content of rutin of (9.350±0.050) mg/g, followed by quercetin, isoquercetin, kaempferol-3-o-rutoside and kaempferol of two phenolic compounds. At 0.5 mg/mL, the scavenging rates of hydroxyl free radical, ABTS+ and DPPH free radical reached (73.29±0.09)%, (96.21±0.25)% and (82.55±0.68)%, respectively, with FRAP value of (2.49±0.09) mmol/L. Conclusion: The fermented tartary buckwheat lees are rich in phenolic compounds, and the lees extracts has certain antioxidant activity. In addition, at low concentration, the tartary buckwheat wine lees also showes good scavenging effects on hydroxyl radical and ABTS+ radical.
Publication Date
3-27-2024
First Page
146
Last Page
151
DOI
10.13652/j.spjx.1003.5788.2023.80665
Recommended Citation
Jiawei, ZHAO; Jia, ZHENG; Mao, LI; Weijian, ZHANG; and Junlin, YAN
(2024)
"Phenolic compositions and in vitro antioxidant activities of tartary buckwheat wine lees,"
Food and Machinery: Vol. 40:
Iss.
2, Article 22.
DOI: 10.13652/j.spjx.1003.5788.2023.80665
Available at:
https://www.ifoodmm.cn/journal/vol40/iss2/22
References
[1] 刘强, 徐钰惟, 许世亮, 等. 苦荞发酵酒糟对糖尿病小鼠的降糖作用[J]. 食品科技, 2022, 47(2): 135-139.
LIU Q, XU Y W, XU S L, et al. Hypoglycemic effect of tartary buckwheat fermented distiller's grains on diabetic mice[J]. Food Science and Technology, 2022, 47(2): 135-139.
[2] JAECHEOL K, RYUN H K, KEUM T H. Flavonoids in different parts of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) during growth[J]. Journal of Food Composition and Analysis, 2023(120): 105362.
[3] 孙坤坤. 苦荞麦酚类物质的鉴定、分布及其生物活性研究[D]. 荆州: 长江大学, 2020: 12-15.
SUN K K. Compositions and biological activities of phenolic compounds of Tartary buckwheat[D]. Jingzhou: Yangtze University, 2020: 12-15.
[4] 赵佳伟, 袁杰彬, 安明哲, 等. 黄酮类化合物对肠道微生物的影响及其机制研究进展[J]. 酿酒科技, 2021(4): 89-95.
ZHAO J W, YUAN J B, AN M Z, et al. Progress in understanding the effect and mechanism of flavonoids on intestinal microorganisms[J]. Liquor-Making Science & Technology, 2021(4): 89-95.
[5] FAN Z. Chemical composition and health effects of tartary buckwheat[J]. Food Chemistry, 2016, 203(15): 231-245.
[6] 李云龙, 李红梅, 胡俊君, 等. 响应面法优化苦荞酒糟黄酮提取工艺的研究[J]. 中国酿造, 2013, 32(7): 38-42.
LI Y L, LI H M, HU J J, et al. Extraction of total flavonoids from tartary buckwheat stillage by response surface methodology[J]. China Brewing, 2013, 32(7): 38-42.
[7] 徐健, 冯俊伟, 黄霜, 等. 酒糟水解液中己酸对丁醇发酵的影响及脱毒策略评价[J]. 食品与发酵工业, 2023, 49(23): 89-95.
XU J, FENG J W, HUANG S, et al. Effect of hexanoic acid in Distillers' grain waste hydrolysate on butanol fermentation and evaluation of detoxification strategy[J]. Food and Fermentation Industries, 2023, 49(23): 89-95.
[8] 彭昱雯, 吴冬梅. 酒糟发酵生物饲料的生产及其对动物生产性能的影响[J]. 饲料研究, 2022, 45(2): 158-160.
PENG L W, WU D M. Production of distiller's grain fermentation biological feed and its effect on animal performance[J]. Feed Research, 2022, 45(2): 158-160.
[9] 郭凯凯. 苦荞酒酿造工艺与酒糟黄酮提取的研究[D]. 天津: 天津科技大学, 2015: 10-11.
GUO K K. Study on brewing technology of buckwheat wine and extraction of flavonoids from buckwheat[D]. Tianjin: Tianjin University of Science and Technology, 2015: 10-11.
[10] 张伟建, 袁杰彬, 李茂, 等. 超声波辅助乙醇提取苦荞酒酒糟及底锅水总黄酮工艺优化[J]. 酿酒科技, 2022(1): 23-27, 35.
ZHANG W J, YAN J B, LI M, et al. Optimization of ultrasonic-assisted ethanol extraction technology of total flavonoids from spent grains and steamer bottom water of tartary buckwheat liquor[J]. Liquor-Making Science & Technology, 2022(1): 23-27, 35.
[11] 孙丹, 黄士淇, 蔡圣宝, 等. 不同加工方式对苦荞中总酚、总黄酮及抗氧化性的影响[J]. 食品与发酵工业, 2016, 42(1): 141-147.
SUN D, HUANG S Q, CAI S B, et al. The effects of different processing methods on the total phenolics content (TPC), flavonoids, and antioxidant activities of tartary buckwheat[J]. Food and Fermentation Industries, 2016, 42(1): 141-147.
[12] 胡园园. 苦荞黄酮的分离纯化及其在肝细胞和血管损伤中的调节效应[D]. 西安: 陕西师范大学, 2016: 19-20.
HU Y Y. Isolation and purification of tartary buckwheat flavone and its regulatory effect on hepatocyte and vascular injury[D]. Xi'an: Shaanxi Normal University, 2016: 19-20.
[13] 方晓敏, 任世达, 贾睿, 等. 低频静磁场对发芽玉米酚类物质富集及降糖活性的影响[J]. 食品科学, 2022, 43(19): 88-94.
FANG X M, REN S D, JIA R, et al. Effect of low-frequency static magnetic field on enrichment of phenolics and hypoglycemic activity of germinated maize (Zea mays L.) [J]. Food Science, 2022, 43(19): 88-94.
[14] 王戎, 廖勤俭, 安明哲, 等. 白酒中酚酸及酚酸酯检测方法的研究[J]. 酿酒科技, 2019(7): 110-113.
WANG R, LIAO Q J, AN M Z, et al. Detection methods of phenolic acids and phenolic acid esters in Baijiu[J]. Liquor-Making Science & Technology, 2019(7): 110-113.
[15] 晏俊玲, 樊扬, 秦川, 等. 苦笋总黄酮提取工艺优化及其抗炎抗氧化活性研究[J]. 四川农业大学学报, 2021, 40(2): 276-285.
YAN J L, FAN Y, QIN C, et al. Optimization of the extraction process of total flavonoids from the shoots of Pleioblastus amarus and evaluation of its anti-inflammatory and antioxidant activities[J]. Journal of Sichuan Agricultural University, 2021, 40(2): 276-285.
[16] 张静祎, 翟爱华, 王佳男. 煮制加工对不同绿豆中黄酮含量的影响及抗氧化活性研究[J]. 中国食品添加剂, 2020, 31(3): 155-162.
ZHANG J W, ZHAI A H, WANG J N, et al. Effect of cooking process on flavonoids content in different kind of mung beans and their antioxidant activity[J]. China Food Additives, 2020, 31(3): 155-162.
[17] DU B, XU B J. Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) of β-glucans from different sources with various molecular weight[J]. Bioactive Carbohydrates and Dietary Fibre, 2014, 3(1): 11-16.
[18] 徐建国. 燕麦发芽过程中多酚含量及其抗氧化活性的变化[J]. 中国食品学报, 2013, 13(1): 201-205.
XU J G. Changes in the phenolic content and antioxidant activity in oats during germination[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(1): 201-205.
[19] 余清, 陈绍军. 乌饭树叶色素提取工艺的研究[J]. 河南科技大学学报(自然科学版), 2007, 28(6): 75-77.
YU Q, CHEN S J. Study on extraction of pigment from Vaccinium Bracteatum Thunb. leaf[J]. Journal of Henan University of Science and Technology (Natural Science), 2007, 28(6): 75-77.
[20] 李慧, 王润梅, 安志鹏, 等. 广灵苦荞黄酮类化合物的分离和鉴定[J]. 种子, 2018, 37(1): 94-97.
LI H, WANG R M, AN Z P, et al. Separation and identification of flavonoids compounds from Guangling tartary buckwheat seeds[J]. Seed, 2018, 37(1): 94-97.
[21] 徐宝财, 肖钢, 丁霄霖, 等. 液质联用分析测定苦荞黄酮[J]. 食品科学, 2003(6): 113-117.
XU B C, XIAO G, DING L X, et al. Determination of tartary buckwheat flavonoids by liquid mass analysis[J]. Food Science, 2003(6): 113-117.
[22] 吴萌萌, 刘怡, 严馨, 等. 苦荞麸皮黄酮提取物及其有效成分的抑菌活性[J]. 食品与生物技术学报, 2021, 40(11): 77-83.
WU M M, LIU Y, YAN X, et al. Antibacterial activities of flavonoid extracts of tartary buckwheat bran and its effective components[J]. Journal of Food Science and Biotechnology, 2021, 40(11): 77-83.
[23] 杨红叶, 柴岩, 王玉堂, 等. 不同种类荞麦中各种存在形式多酚含量的研究[J]. 食品科学, 2011, 32(6): 60-64.
YANG H Y, CHAI Y, WANG Y T, et al. Analysis of free and bound phenolics in different buckwheat varieties[J]. Food Science, 2011, 32(6): 60-64.
[24] 陈月, 朱勇, 秦礼康. 苦荞不同部位酚类化合物组成与抗氧化活性[J]. 食品与机械, 2022, 38(11): 15-19.
CHEN Y, ZHU Y, QIN L K. Phenolic compounds profile and antioxidant activities of different fractions of tartary buckwheat[J]. Food & Machinery, 2022, 38(11): 15-19.
[25] 谢雨寻, 叶有明, 李龙越, 等. 茶酒糟中茶多酚提取工艺优化及其抗氧化活性的研究[J]. 中国酿造, 2022, 41(2): 204-209.
XIE Y X, YE Y M, LI L Y, et al. Optimization of extraction process and antioxidant activity of tea polyphenols from tea distiller's grains[J]. China Brewing, 2022, 41(2): 204-209.
[26] 王小媛, 丁俊豪, 张园园, 等. 超声波辅助提取白酒酒糟中多酚类物质及其抗氧化活性评价[J]. 食品科技, 2018, 43(8): 192-197.
WANG X Y, DING J H, ZHANG Y Y, et al. Ultrasonic-assisted extraction and antioxidant activity evaluation of polyphenols from liquor distiller's grains[J]. Food Science and Technology, 2018, 43(8): 192-197.