Abstract
Objective: This study aimed to optimize the pectin extraction yield from immature fruits of Guanxi pomelo by L. plantarum fermentation and analysis of the properties of pectin extracted by L.s plantarum fermentation. Methods: Taking the extraction yield of pectin as the index, orthogonal test was used to optimize the process conditions of fermentation of immature fruits of Guanxi pomelo by L. plantarum, and the content of galacturonic acid, degree of esterification, protein, water-holding capacity, oil-holding capacity, emulsifying activity and emulsion stability of pectin were determined. Results: The optimal conditions for fermentation of immature fruits of Guanxi pomelo by L. plantarum were as follows: fermentation temperature of 37 ℃, L. plantarum fermentation inoculum of 14%, liquid-solid ratio of 25∶1 (mL/g), and fermentation time of 12 h. Under the control of these conditions, the extraction yield of pectin was 11.60%, and the content of galacturonic acid; the degree of esterification, protein, water-holding capacity, oil-holding capacity, emulsifying activity and emulsion stabilities were about 26.13%, 68.58%, 0.53 g/g, 7.01 g/g, 14.33% and 33%, respectively. Conclusion: The extraction yield of pectin extracted by fermentation of L. plantarum was similar to that of the acid process, and the obtained pectin was highly esterified pectin with good application properties.
Publication Date
3-27-2024
First Page
192
Last Page
196
DOI
10.13652/j.spjx.1003.5788.2023.80385
Recommended Citation
Hongxia, DING; Yuanfan, YANG; Shuan, HUANG; and Hui, NI
(2024)
"Optimization of pectin extraction from immature fruits of Guanxi pomelo by Lactobacillus plantarum fermentation,"
Food and Machinery: Vol. 40:
Iss.
2, Article 28.
DOI: 10.13652/j.spjx.1003.5788.2023.80385
Available at:
https://www.ifoodmm.cn/journal/vol40/iss2/28
References
[1] TANG Y, ZHAN T, FAN G, et al. Selenium combined with chitin reduced phosphorus leaching in soil with pomelo by driving soil phosphorus cycle via microbial community[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107060.
[2] WU H, XIAO D, LU J, et al. Effect of high-pressure homogenization on microstructure and properties of pomelo peel flour film-forming dispersions and their resultant films[J]. Food Hydrocolloids, 2020, 102: 105628.
[3] LIU G, HOU T, GUO S, et al. Comprehensive utilization of immature honey pomelo fruit for the production of value-added compounds using novel continuous phase transition extraction technology[J]. Biology, 2021, 10(8): 815.
[4] HOU T, GUO S, LIU Z, et al. Novel pectic polysaccharides isolated from immature honey pomelo fruit with high immunomodulatory activity[J]. Molecules, 2022, 27(23): 8 573.
[5] DIAS I P, BARBIERI S F, FETZER D E L, et al. Effects of pressurized hot water extraction on the yield and chemical characterization of pectins from Campomanesia xanthocarpa Berg fruits[J]. International Journal of Biological Macromolecules, 2020, 146: 431-443.
[6] 刘娴. 用发酵法提取马铃薯渣果胶的工艺研究[J]. 黑河学院学报, 2017, 8(5): 213-214.
LIU X. Research on technique of extracting potato slag pectin with fermentation[J]. Journal of Heihe University, 2017, 8(5): 213-214.
[7] WAN Y J, HONG T, SHI H F, et al. Probiotic fermentation modifies the structures of pectic polysaccharides from carrot pulp[J]. Carbohydrate Polymers, 2021, 251: 117116.
[8] 田亚红, 刘辉. 不同方法提取甘薯渣中果胶的研究[J]. 食品工业, 2013(7): 112-114.
TIAN Y H, LIU H. Different extraction techniques for pectin from sweet potato pomace[J]. The Food Industry, 2013(7): 112-114.
[9] 王若男, 厉荣玉, 郑鹏, 等. 黄精多糖微生物发酵提取、表征及其抗氧化活性分析[J]. 中国食品添加剂, 2022, 33(9): 54-62.
WANG R N, LI R Y, ZHENG P, et al. Microbial fermentation extraction, characterization and antioxidant activity of Polygonatum polysaccharide[J]. China Food Additives, 2022, 33(9): 54-62.
[10] 戴少庆, 李高阳, 苏东林, 等. 柑橘果胶的提取及其改性方法的研究进展[J]. 食品工业科技, 2013, 34(16): 376-379.
DAI S Q, LI G Y, SU D L, et al. Research progress in citrus pectin extraction and modification[J]. Science and Technology of Food Industry, 2013, 34(16): 376-379.
[11] 侯金丽. 乳酸菌在发酵食品中的应用研究进展[J]. 工业微生物, 2023, 53(1): 1-3.
HOU J L. Application of Lactobacillus in fermented food[J]. Industrial Microbiology, 2023, 53(1): 1-3.
[12] 谢蔓莉, 叶发银, 雷琳, 等. 酸法提取条件对苹果果胶理化特性的影响及机制[J]. 食品与发酵工业, 2018, 44(4): 287-292.
XIE M L, YE F Y, LEI L, et al. Effects of acid extraction conditions on the physicochemical properties of apple pectin and its mechanisms[J]. Food and Fermentation Industries, 2018, 44(4): 287-292.
[13] 刘金梅, 常文环, 陈志敏, 等. 果胶及其微生物降解研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2 723-2 731.
LIU J M, CHANG W H, CHEN Z M, et al. Research progress of pectin and its microbial degradation[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2 723-2 731.
[14] 刘丽平, 张淑华, 及雪敏. 果胶的提取及应用研究进展[J]. 江苏农业科学, 2016, 44(8): 30-34.
LIU L P, ZHANG S H, JI X M. Research progress of pectin extraction and application[J]. Jiangsu Agricultural Sciences, 2016, 44(8): 30-34.
[15] 卫津宇. 植物乳杆菌高效发酵生产胞外多糖及其应用研究[D]. 无锡: 江南大学, 2022: 1-4.
WEI J Y. Efficient production of functional exopolysaccharide by Lactobacillus plantarum and their applications[D]. Wuxi: Jiangnan University, 2022: 1-4.
[16] 姚月华, 唐宁, 应煦锐, 等. 红萍多糖结构特征、流变特性及抗氧化活性[J]. 食品与机械, 2022, 38(3): 154-159, 172.
YAO Y H, TANG N, YING X R, et al. Characterization, rheological study and antioxidant activities of polysaccharide from Azolla[J]. Food & Machinery, 2022, 38(3): 154-159, 172.
[17] SILVA I M, GONZAGA L V, AMANTE E R, et al. Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology[J]. Bioresource Technology, 2008, 99(13): 5 561-5 566.
[18] SAEIDY S, OMIDI P, NASIRPOUR A, et al. Physicochemical and functional properties of cross linked and high pressure homogenized sugar beet pectin: A comparative study[J]. Food Hydrocolloids, 2023, 134: 108041.
[19] AKLILU E G. Modeling and optimization of pectin extraction from banana peel using artificial neural networks (ANNs) and response surface methodology (RSM)[J]. Journal of Food Measurement and Characterization, 2021, 15(3): 2 759-2 773.
[20] 王兆为, 解梦汐, 于淼, 等. 发酵—超声提取豆渣可溶性膳食纤维工艺优化[J]. 农业科技与装备, 2022(5): 59-61, 64.
WANG Z W, XIE M X, YU M, et al. Optimization of fermentation-ultrasonic extraction of soluble dietary fiber from okara[J]. Agricultural Science & Technology and Equipment, 2022(5): 59-61, 64.
[21] 张乔会, 万海英, 李亚杰, 等. 响应面法优化发酵法提取贡水白柚皮可溶性膳食纤维工艺[J]. 中国食品添加剂, 2021, 32(12): 104-111.
ZHANG Q H, WAN H Y, LI Y J, et al. Optimization of extraction conditions of soluble dietary fiber from Gongshui white pomelo peel using response surface analysis[J]. China Food Additives, 2021, 32(12): 104-111.
[22] 刘俊红, 林青青, 刘瑞芳, 等. 发酵法提取葡萄皮渣中可溶性膳食纤维的研究[J]. 河南城建学院学报, 2022, 31(1): 75-79, 92.
LIU J H, LIN Q Q, LIU R F, et al. Extraction of soluble dietary fiber from grape skin pomace by fermentation method[J]. Journal of Henan University of Urban Construction, 2022, 31(1): 75-79, 92.
[23] 周向辉. 响应面法优化发酵猴头菇多糖提取工艺研究[J]. 化学工程师, 2023, 37(5): 10-14, 52.
ZHOU X H. Optimization of fermented monkey head mushroom polysaccharide extraction process by response surface method[J]. Chemical Engineer, 2023, 37(5): 10-14, 52.
[24] MEGAS-PREZ R, FERREIRA-LAZARTE A, VILLAMIEL M. Valorization of grape pomace as a renewable source of techno-functional and antioxidant pectins[J]. Antioxidants, 2023, 12(4): 957.
[25] MUOZ-ALMAGRO N, RUIZ-TORRALBA A, MNDEZ-ALBIANA P, et al. Berry fruits as source of pectin: Conventional and nonconventional extraction techniques[J]. International Journal of Biological Macromolecules, 2021, 186: 962-974.
[26] 闵钟熳, 高路, 高育哲, 等. 黑曲霉发酵法制备米糠粕可溶性膳食纤维工艺优化及其理化分析[J]. 食品科学, 2018, 39(2): 112-118.
MIN Z M, GAO L, GAO Y Z, et al. Optimization of the preparation process for soluble dietary fiber from rice bran by Aspergillus niger fermentation and its physicochemical properties[J]. Food Science, 2018, 39(2): 112-118.
[27] 李扬. 狐臭柴叶片果胶提取及干燥技术研究[D]. 贵阳: 贵州大学, 2021: 31-32.
LI Y. Study on extraction and drying technology of pectin from Premna puberula pamp[D]. Guiyang: Guizhou University, 2021: 31-32.
[28] CHEN H, QIU S, GAN J, et al. New insights into the functionality of protein to the emulsifying properties of sugar beet pectin[J]. Food Hydrocolloids, 2016, 57: 262-270.