Abstract
Mung beans are rich in nutrients, but their dense structure and dense cortex lead to long a maturation time and poor edible convenience. To provide an empirical basis and novel ideas for future research on the pre-ripening of mung beans, this review analyzes pre-ripening, specifically focusing on the pre-ripening process of mung beans and the effects of different processing methods on the edible quality and nutritional components of mung beans. Moreover, the development direction of preripening technology of mung beans is also prospected.
Publication Date
3-27-2024
First Page
227
Last Page
232
DOI
10.13652/j.spjx.1003.5788.2023.80471
Recommended Citation
Meilin, QU; Junjun, HU; Zhe, CHENG; and Yunlong, LI
(2024)
"Research progress of mung bean pre-curing technology and quality,"
Food and Machinery: Vol. 40:
Iss.
2, Article 33.
DOI: 10.13652/j.spjx.1003.5788.2023.80471
Available at:
https://www.ifoodmm.cn/journal/vol40/iss2/33
References
[1] MAHGOUB S A, MOHAMMED A T, MOBARAK E A. Physiochemical, nutritional and technological properties of instant porridge supplemented with mung bean[J]. Food and Nutrition Sciences, 2020, 11(12): 2-3.
[2] 张思维, 李东梅, 孙建云, 等. 4种杂粮的营养价值与保健功能概述[J]. 农业科技与信息, 2022(24): 80-85.
ZHANG S W, LI D M, SUN J Y, et al. Overview of nutritional value and health function of 4 kinds of grains[J]. Agricultural Science and Technology and Information, 2022(24): 80-85.
[3] BRISHTI F H, YEA C S, MUHAMMAD K, et al. Texturized mung bean protein as a sustainable food source: Effects of extrusion on its physical, textural and protein quality[J]. Innovative Food Science & Emerging Technologies, 2021, 67(1): 3-4.
[4] 张桂芳, 王立东, 包国凤, 等. 利用微波干燥技术研制速熟绿豆[J]. 食品研究与开发, 2014, 35(1): 52-55.
ZHANG G F, WANG L D, BAO G F, et al. Preparation of quick-cooking mung bean by microwave drying technology[J]. Food Research and Development, 2014, 35(1): 52-55.
[5] 张桂芳, 张东杰, 王立东, 等. 速熟绿豆加工工艺的优化[J]. 食品工业科技, 2017, 38(11): 205-208.
ZHANG G F, ZHANG D J, WANG L D, et al. Optimization of processing technology of quick-ripening mung bean[J]. Food Industry Science and Technology, 2017, 38(11): 205-208.
[6] 巩僖, 高婧譞, 张彧. 速煮绿豆冷冻干燥工艺[J]. 食品工业, 2019, 40(9): 77-79.
GONG X, GAO J X, ZHANG Y. Freeze-drying process of instant boiled mung bean[J]. Food Industry, 2019, 40(9): 77-79.
[7] 乔筱童. 绿豆与大米共煮同熟技术的研究[D]. 长春: 吉林农业大学, 2015: 24-27.
QIAO X T. Research on co-cooking technology of mung bean and rice[D]. Changchun: Jilin Agricultural University, 2015: 24-27.
[8] 于雷, 乔筱童, 李晓蒙. 一种与大米共煮同熟的绿豆加工技术: 201510115002.X[P]. 2018-04-06.
YU L, QIAO X T, LI X M. A mung bean processing technology for co-cooking with rice: 201510115002.X[P]. 2018-04-06.
[9] 李晓蒙. 绿豆与大米共煮同熟工艺及其发酵酒的研究[D]. 长春: 吉林农业大学, 2016: 30-31.
LI X M. Study on co-cooking technology of mung bean and rice and fermentation wine[D]. Changchun: Jilin Agricultural University, 2016: 30-31.
[10] 李文浩, 舒畅, 闫淑琴, 等. 蒸煮工艺参数对绿豆糊化特性的影响[J]. 食品科技, 2010, 35(3): 164-167.
LI W H, SHU C, YAN S Q, et al. Effect of cooking parameters on gelatinization characteristics of mung bean[J]. Food Science and Technology, 2010, 35(3): 164-167.
[11] 郭晨, 田晓静, 杜月红, 等. 不同预熟化处理对绿豆营养成分及蒸煮特性的影响[J]. 食品研究与开发, 2022, 43(16): 27-34.
GUO C, TIAN X J, DU Y H, et al. Effects of different pre-curing treatments on nutrient composition and cooking characteristics of mung bean[J]. Food Research and Development, 2022, 43(16): 27-34.
[12] 孙军涛, 张智超, 肖付刚, 等. 高温高压和常压蒸煮对绿豆糊化度的影响研究[J]. 食品工业, 2019, 40(5): 103-105.
SUN J T, ZHANG Z C, XIAO F G, et al. Effect of high temperature, high pressure and atmospheric pressure cooking on gelatinization degree of mung bean[J]. Food Industry, 2019, 40(5): 103-105.
[13] 白洁, 刘丽莎, 李玉美, 等. 红小豆蒸煮过程中的糊化特性及微观结构[J]. 食品科学, 2018, 39(7): 41-46.
BAI J, LIU L S, LI Y M, et al. Gelatinization properties and microstructure of red bean during cooking[J]. Food Science, 2018, 39(7): 41-46.
[14] MOHANTY C S, VERMA S, SINGH V, et al. Characterization of winged bean (Psophocarpus tetragonolobus(L.) DC.) based on molecular, chemical and physiological parameters[J]. American Journal of Molecular Biology, 2013, 15(4): 807-816.
[15] 王大为, 董欣, 张星, 等. 不同浸泡方法对绿豆吸水特性的影响[J]. 食品科学, 2017, 38(13): 83-89.
WANG D W, DONG X, ZHANG X, et al. Effects of different soaking methods on water absorption characteristics of mung bean[J]. Food Science, 2017, 38(13): 83-89.
[16] 何磊, 于宁, 陈颖. 常见加工方式对杂豆品质的影响与调控[J]. 中国粮油学报, 2023, 38(1): 177-185.
HE L, YU N, CHEN Y. Effect and control of common processing methods on the quality of miscellaneous beans[J]. Journal of Cereals and Oils, 2023, 38(1): 177-185.
[17] 刘畅. 超高压处理对全籽粒绿豆理化和加工特性的影响[D]. 沈阳: 吉林农业大学, 2020: 32-33.
LIU C. Effect of ultra-high pressure treatment on physicochemical and processing characteristics of whole seed Mung bean[D]. Shenyang: Jilin Agricultural University, 2020: 32-33.
[18] 刘婷婷, 包佳微, 李嘉欣, 等. 浸泡和发芽对杂豆酚类物质及其抗氧化性的影响[J]. 中国粮油学报, 2019, 34(8): 26-33.
LIU T T, BAO J W, LI J X, et al. Effects of soaking and germination on phenolic substances and antioxidant properties of common bean[J]. Journal of Cereals and Oils, 2019, 34(8): 26-33.
[19] 王英, 张建强, 李永武, 等. 不同微波条件对速熟绿豆水分含量影响的研究[J]. 粮食科技与经济, 2013, 38(3): 49-50, 53.
WANG Y, ZHANG J Q, LI Y W, et al. Effects of different microwave conditions on water content of quick-ripfying mung bean[J]. Food Science and Economy, 2013, 38(3): 49-50, 53.
[20] SRISANG N, VARANYANOND W, SOPONRONNARIT S, et al. Effects of heating media and operating conditions on drying kinetics and quality of germinated brown rice[J]. Journal of Food Engineering, 2011, 107(3/4): 385-392.
[21] 徐远阳. 不同储藏期微生物活性值与小麦品质的相关性分析[D]. 武汉: 武汉轻工大学, 2013: 14-15.
XU Y Y. Correlation analysis of microbial activity value and wheat quality in different storage periods[D]. Wuhan: Wuhan University of Light Industry, 2013: 14-15.
[22] 滕菲, 李永富, 王莉, 等. 高温流化对黑米蒸煮品质的改良效果[J]. 中国粮油学报, 2017, 32(10): 21-27.
TENG F, LI Y F, WANG L, et al. Effect of high temperature fluidization on cooking quality of black rice[J]. China Journal of Cereals and Oils, 2017, 32(10): 21-27.
[23] 周素梅, 李若凝, 唐健, 等. 绿豆营养功能特性及其在植物基食品开发中的应用[J]. 粮油食品科技, 2022, 30(2): 16-23.
ZHOU S M, LI R N, TANG J, et al. Nutritional function of mung bean and its application in the development of plant-based food[J]. Grain, Oil and Food Science and Technology, 2022, 30(2): 16-23.
[24] 张舒, 盛亚男, 冯玉超, 等. 焙烤对绿豆蛋白结构和功能性质的影响[J]. 食品工业科技, 2021, 42(4): 44-49.
ZHANG S, SHENG Y N, FENG Y C, et al. Effects of baking on structure and functional properties of mung bean protein[J]. Science and Technology of Food Industry, 2021, 42(4): 44-49.
[25] 张俊杰, 郑嘉琛, 谢宜桐, 等. 高水分挤压温度对绿豆蛋白结构的影响[J]. 食品工业科技, 2022, 43(20): 130-136.
ZHANG J J, ZHENG J C, XIE Y T, et al. Effect of high water extrusion temperature on structure of mung bean protein[J]. Science and Technology of Food Industry, 2022, 43(20): 130-136.
[26] 张舒, 王长远, 盛亚男, 等. 加工方式对绿豆蛋白亚基和功能性质的影响[J]. 食品科学, 2019, 40(19): 113-119.
ZHANG S, WANG C Y, SHENG Y N, et al. Effects of processing methods on subunits and functional properties of mung bean protein[J]. Food Science, 2019, 40(19): 113-119.
[27] MUBARAK A E. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes[J]. Food Chemistry, 2005, 89(4): 489-495.
[28] BRISHTI F H, YEA C S, MUHAMMAD K, et al. Texturized mung bean protein as a sustainable food source: Effects of extrusion on its physical, textural and protein quality[J]. Innovative Food Science & Emerging Technologies, 2021, 67(3): 102591.
[29] 刘紫薇, 李欣, 高菲, 等. 煮制时间对绿豆中淀粉性质的影响及相关性分析[J]. 包装工程, 2021, 42(13): 93-99.
LIU Z W, LI X, GAO F, et al. Effect and correlation analysis of cooking time on starch properties in mung bean[J]. Packaging Engineering, 2021, 42(13): 93-99.
[30] ROMPOTHI O, PRADIPASENA P, TANANUWONG K, et al. Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability[J]. Carbohydrate Polymers, 2017, 157: 748-756.
[31] SHEN H, GUO Y, ZHAO J, et al. The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment[J]. International Journal of Biological Macromolecules, 2021, 191: 821-831.
[32] 王艳, 张煜松, 刘兴丽, 等. 湿热处理对绿豆淀粉结构及理化特性的影响[J]. 轻工学报, 2022, 37(3): 36-42.
WANG Y, ZHANG Y S, LIU X L, et al. Effects of moisture and heat treatment on structure and physicochemical properties of mung bean starch[J]. Journal of Light Industry, 2022, 37(3): 36-42.
[33] 王青林, 张睿, 肖建东, 等. 湿热处理对不同淀粉理化特性的影响[J]. 食品工业, 2016, 37(12): 88-91.
WANG Q L, ZHANG R, XIAO J D, et al. Effects of moisture and heat treatment on physicochemical properties of different starches[J]. Food Industry, 2016, 37(12): 88-91.
[34] 赵佳. 水—热处理对淀粉理化特性的影响[D]. 咸阳: 西北农林科技大学, 2012: 22-23.
ZHAO J. Effect of water-heat treatment on physicochemical properties of starch[D]. Xianyang: Northwest A & F University, 2012: 22-23.
[35] 杨红丹. 杂豆粉及其淀粉理化性质与功能特性研究[D]. 咸阳: 西北农林科技大学, 2011: 28-29.
YANG H D. Study on physicochemical properties and functional properties of mixed bean powder and its starch[D]. Xianyang: Northwest A & F University, 2011: 28-29.
[36] HUONG N T M, HOA P N, VAN HUNG P. Effects of microwave treatments and retrogradation on molecular crystalline structure and in vitro digestibility of debranched mung-bean starches[J]. International Journal of Biological Macromolecules, 2021, 190: 904-910.
[37] LI W, GUO H, WANG P, et al. Physicochemical characteristics of high pressure gelatinized mung bean starch during recrystallization[J]. Carbohydrate Polymers, 2015, 131: 432-438.
[38] SHI Z, YAO Y, ZHU Y, et al. Nutritional composition and antioxidant activity of twenty mung bean cultivars in China[J]. The Crop Journal, 2016, 4(5): 398-406.
[39] 刘婷婷. 不同加工方式对杂豆酚类物质及其抗氧化性的影响[D]. 大庆: 黑龙江八一农垦大学, 2019: 31-32.
LIU T T. Effects of different processing methods on phenolic substances and antioxidant properties of common bean[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019: 31-32.
[40] 李然, 李振川, 陈珊珊, 等. 应用低场核磁共振研究绿豆浸泡过程[J]. 食品科学, 2009, 30(15): 137-141.
LI R, LI Z C, CHEN S S, et al. Study of mung bean soaking process by low field nuclear magnetic resonance imaging[J]. Food Science, 2009, 30(15): 137-141.
[41] 李丽, 张小慧, 龚盛昭, 等. 绿豆萌芽不同部位总酚酸和总黄酮量的测定及其抗氧化能力[J]. 日用化学工业, 2015, 45(7): 393-396.
LI L, ZHANG X H, GONG S Z, et al. Determination of total phenolic acids and flavonoids in different parts of mung bean germination and their antioxidant capacity[J]. Chemical Industry Daily, 2015, 45(7): 393-396.
[42] 张小慧, 李丽, 董银卯, 等. 赤小豆萌芽不同部位总酚酸和总黄酮含量分析及其抗氧化活性研究[J]. 食品工业, 2014, 35(10): 90-92.
ZHANG X H, LI L, DONG Y Z, et al. Study on the contents of Total phenolic acid and total flavonoids in different Parts of Chixiao Bean sprout and their antioxidant activities[J]. Food Industry, 2014, 35(10): 90-92.
[43] VALMOR Z I D A V. Effects of storage period and temperature on the technological properties, starch digestibility, and phenolic compounds of mung beans (Vigna radiata L.)[J]. Journal of Stored Products Research, 2020, 89: 1-11.
[44] 王雪, 肖萍, 王步江, 等. HPLC法测定低温烘焙绿豆中牡荆苷与异牡荆苷的含量及变化[J]. 食品研究与开发, 2019, 40(10): 152-157.
WANG X, XIAO P, WANG B J, et al. Determination of vitexin and isovitexin in low-temperature roasted mung bean by HPLC[J]. Food Research and Development, 2019, 40(10): 152-157.
[45] 张静祎, 翟爱华, 王佳男. 煮制加工对不同绿豆中黄酮含量的影响及抗氧化活性研究[J]. 中国食品添加剂, 2020, 31(3): 155-162.
ZHANG J W, ZHAI A H, WANG J N. Effects of cooking and processing on flavonoid content and antioxidant activity in different mung beans[J]. Chinese Food Additives, 2020, 31(3): 155-162.
[46] 张桂芳, 于金池, 王颖, 等. 煮制加工对绿豆中黄酮含量的影响[J]. 食品研究与开发, 2017, 38(4): 38-41.
ZHANG G F, YU J C, WANG Y, et al. Effect of cooking and processing on flavonoid content in mung bean[J]. Food Research and Development, 2017, 38(4): 38-41.
[47] HAN S, LIU H, HAN Y, et al. Effects of calcium treatment on malate metabolism and γ-aminobutyric acid (GABA) pathway in postharvest apple fruit[J]. Food Chemistry, 2021, 334: 127479.
[48] 石磊, 刘超, 周柏玲, 等. 萌发条件对绿豆芽中γ-氨基丁酸含量的影响研究[J]. 粮食与油脂, 2019, 32(3): 50-53.
SHI L, LIU C, ZHOU B L, et al. Effects of germination conditions on gamma-aminobutyric acid content in mung bean sprouts[J]. Food and Oil, 2019, 32(3): 50-53.
[49] 姜宇婷. 绿豆发芽过程中组分及营养变化研究进展[J]. 现代农业科技, 2020(14): 209-214.
JIANG Y T. Research progress of components and nutritional changes of mung bean during germination[J]. Modern Agricultural Science and Technology, 2020(14): 209-214.
[50] 马玉玲, 罗可大, 佟立涛, 等. 绿豆发芽富集GABA及产品开发研究进展[J]. 中国粮油学报, 2018, 33(5): 119-127.
MA Y L, LUO D K, TONG L T, et al. Research progress on GABA enrichment in mung bean germination and product development[J]. Journal of Cereals and Oils, 2018, 33(5): 119-127.
[51] MA Y L, WANG A X, YANG M, et al. Influences of cooking and storage on γ-aminobutyric acid (GABA) content and distribution in mung bean and its noodle products[J]. LWT, 2022, 154: 112783.
[52] 谷春梅, 候春宇, 程安玮. 蒸汽爆破对红豆和绿豆多酚含量及抗氧化活性的影响[J]. 核农学报, 2021, 35(7): 1 574-1 582.
GU C M, HOU C Y, CHENG A W. Effects of steam blasting on polyphenol content and antioxidant activity of red bean and mung bean[J]. Journal of Nuclear Agriculture, 2021, 35(7): 1 574-1 582.
[53] GONG L, HUANG L, ZHANG Y. Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity[J]. Journal of Agricultural and Food Chemistry, 2012, 60(29): 7 177-7 184.