•  
  •  
 

Abstract

Objective: This study aimed to investigate different discriminant analysis models for pseudo-mixtures of walnut oil and rapeseed oil. Methods: Gas chromatography technology was used to analyze the fatty acid content in the adulterated mixture of walnut oil and rapeseed oil. Chemical stoichiometric methods were used to model the gas chromatography data, and discriminant analysis was performed on different proportions of walnut oil and rapeseed oil mixtures. Results: Pure walnut oil and adulterated walnut oil were distinguihed by using Principal Component Analysis (PCA) identified, and percentage of adulteration in the sample was calculated. 83.33% of the samples were successfully categorized using the Bayes discriminant analysis. Partial Least Squares Discriminant Analysis (PLS-DA) achieved 87.50% discrimination accuracy. Based on the BP neural network model for discriminant analysis, the accuracy of the training set was 84.21% and the accuracy of the test set was 80.00%. For both the training and testing sets, the genetic algorithm-based discriminant analysis using an optimized support vector machine (SVM-ga) achieved 100% accuracy. Conclusion: Multiple analytical models can identify the adulteration ratio of walnut oil and rapeseed oil to varying degrees, among which the SVM-ga model had the best prediction accuracy.

Publication Date

3-27-2024

First Page

63

Last Page

68,73

DOI

10.13652/j.spjx.1003.5788.2023.60135

References

[1] AMARAL J S, CASAL S, PEREI RA J A, et al. Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in Portugal[J]. J Agric Food Chem, 2003, 51(26): 7 698-7 702.
[2] RAHIMI P, KABIRI N, ASGARY S, et al. Anti-diabetic effects of walnut oil on alloxan-induced diabetic rats[J]. Afr J Pharm Pharmaco, 2011, 5(17): 1 967-1 978.
[3] 李桂仙, 李晔, 张春丹. 基于脂肪酸谱法分析山茶油掺伪[J]. 食品工业科技, 2019, 40(22): 277-281. LI G X, LI Y, ZHANG C D. Adulteration analysis of camellia oil based on fatty acid spectrometry[J]. Science and Technology of Food Industry, 2019, 40(22): 277-281.
[4] 王道兵, 岳红卫, 高冠勇, 等. 基于稳定氢氧同位素技术的花生油掺假检测技术研究[J]. 中国粮油学报, 2021, 36(8): 118-122. WANG D B, YUE H W, GAO G Y, et al. Research on detection of adulterated peanut oil by stable hydrogen/oxygen isotope analysis[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(8): 118-122.
[5] 傅纤雯, 金铭浩, 花磊, 等. 高气压光电离飞行时间质谱用于食用油掺假的快速定性定量鉴别[J]. 中国粮油学报, 2023, 38(8): 235-243. FU Q W, JIN M H, HUA L, et al. The rapid qualitative and quantitative adulteration detection of edible oils by high-pressure photoionization time-of-flight mass spectrometry[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(8): 235-243.
[6] 韩玉泽, 王兴瑞, 董国鑫, 等. 基于甘三酯指纹图谱及化学计量学的青海亚麻籽油掺假识别研究[J]. 中国粮油学报, 2022, 37(7): 158-165. HAN Y Z, WANG X R, DONG G X, et al. Identification of Qinghai flaxseed oil adulteration based on triacylglycerol fingerprint and chemometrics[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(7): 158-165.
[7] 梁鹏娟, 赵声兰, 陈朝银, 等. 傅里叶变换红外光谱法鉴别纯核桃油并定量检测掺伪含量[J]. 中国粮油学报, 2015, 30(2): 122-126, 130. LIANG P J, ZHAO S L, CHEN C Y, et al. The application of fourier transform infrared(FT-IR) spectroscopy for detection and quantification of adulteration in pure walnut oil[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(2): 122-126, 130.
[8] 唐佳妮, 刘东红. 食用植物油掺假鉴别方法研究进展[J]. 中国粮油学报, 2009, 24(11): 158-162. TANG J N, LIU D H. Research progress on authentication methods of edible vegetable oils[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(11): 158-162.
[9] 吴成招, 王一韬, 胡栋, 等. 近红外光谱技术在食用油掺伪检测中的研究进展[J]. 光谱学与光谱分析, 2023, 43(3): 685-691. WU C Z, WANG Y T, HU D, et al. Research progress of near-infrared spectroscopy in the detection of edible oil adulteration[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 685-691.
[10] 杨振东, 任雪梅, 王健, 等. 基于特征脂肪酸含量的橄榄油掺假快速鉴定模型的建立[J]. 食品安全质量检测学报, 2019, 10(16): 5 357-5 362. YANG Z D, REN X M, WANG J, et al. Establishment of rapid adulteration identification model of olive oil based on fatty acid profile[J]. Journal of Food Safety & Quality, 2019, 10(16): 5 357-5 362.
[11] 孙艳辉, 李双芳, 郭玉宝, 等. 基于荧光光谱技术的菜籽油氧化状态智能评价[J]. 光谱学与光谱分析, 2019, 39(1): 137-141. SUN Y H, LI S F, GUO Y B, et al. Intelligent evaluation of rapeseed oil oxidation state based on fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 137-141.
[12] 王召滢, 桂丽静, 曹冰, 等. 茶油中脂肪酸指纹图谱的分析与评价[J]. 南方林业科学, 2020, 48(2): 8-12. WANG Z Y, GUI L J, CAO B, et al. Analysis and evaluation of fatty acid fingerprints in Camellia oil[J]. South China Forestry Science, 2020, 48(2): 8-12.
[13] 王梓笛, 李双妹, 李艳, 等. 基于拉曼光谱—支持向量机的乳制品快速智能鉴别技术研究[J]. 光谱学与光谱分析, 2020, 40(10): 157-158. WANG Z D, LI S M, LI Y, et al. Rapid and intelligent identification of dairy products based on Raman spectroscopy and support vector machine[J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 157-158.
[14] 周密, 王小花, 朱芊, 等. 氢核磁共振结合支持向量机鉴别蜂蜜植物源[J]. 食品安全质量检测学报, 2021, 12(1): 16-21. ZHOU M, WANG X H, ZHU Q, et al. Identification of the botanic source of honey by 1H nuclear magnetic resonance and support vector machine[J]. Journal of Food Safety & Quality, 2021, 12(1): 16-21.
[15] 朱金艳. 基于BP神经网络的电子鼻、电子舌和色差仪多信息融合技术预测蓝莓汁中花青素含量[J]. 食品科技, 2021, 46(9): 289-295. ZHU J Y. Using e-nose, e-tongue and colorimeter multi-information integration to predict the anthocyanin content in blueberry juice based on back propagation neural network[J]. Food Science and Technology, 2021, 46(9): 289-295.
[16] 周密, 冯灏, 刘杰, 等. 基于ICP-MS截尾数据与支持向量机优化模型鉴别蜂蜜植物源[J]. 分析测试学报, 2021, 40(7): 1 011-1 017. ZHOU M, FENG H, LIU J, et al. Identification of the botanical source of honey based on optimized SVM model with censored data of ICP-MS[J]. Journal of Instrumental Analysis, 2021, 40(7): 1 011-1 017.
[17] 李超, 李孟芝, 崔占虎, 等. 艾粉及常见混伪品的紫外—可见—近红外指纹图谱鉴别研究[J]. 南阳理工学院学报, 2021, 13(6): 98-103. LI C, LI M Z, CUI Z H, et al. Study on UV-VIS-NIR fingerprint identification of artemisia argyi powder and common counterfeits[J]. Journal of Nanyang Institute of Technology, 2021, 13(6): 98-103.
[18] 张思敏, 张也, 伍红年, 等. 不同产地竹节参中7种皂苷含量测定及化学计量学评价[J]. 食品与机械, 2022, 38(3): 65-70, 79. ZHANG S M, ZHANG Y, WU H N, et al. Determination of seven kinds of saponins in Panax japonicus C. A. Mey from different regions by chemometric evaluation[J]. Food & Machinery, 2022, 38(3): 65-70, 79.
[19] 杨莉, 夏阿林, 张榆, 等. 基于低场核磁共振技术的奶粉品牌快速判别[J]. 食品与机械, 2021, 37(8): 105-109. YANG L, XIA A L, ZHANG Y, et al. Fast identification of milk powder brand based on low field nuclear magnetic resonance technology[J]. Food & Machinery, 2021, 37(8): 105-109.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.