Abstract
Objective: Taking Guangxi Liupao tea as an example, an UPLC-MS/MS analysis method with residual amounts of matrine and Oxymatrine was established. Methods: The prepared samples were subjected to optimized acetonitrile aqueous solution (80% acetonitrile+0.2% ammonia water) ultrasonic extraction, mobile phase: formic acid water and formic acid methanol (both 0.1%), gradient elution, and internal standard method quantification. Results: It was linear in the range of 0.1~80.0 ng/mL, r was greater than 0.999 6, the detection limits of matrine and oxymatrine were 1.0 μg/kg, and the quantitative limits were 3.0 μg/kg, which met the regulatory determination requirements for the residue of matrine and oxidative matrine in tea. Through the spike verification, the recovery rate was in the range of 92.0%~104.7%, and the relative standard deviation (RSD) was less than 5.4%. Conclusion: Method combined with purification tube purification (147.7 mg PSA, 15.1 mg GCB, 887.2 mg magnesium sulfate), using Kinetex 2.6 μm Biphenyl 100 chromatographic column (100 mm×3.0 mm) separation solves the problems of low extraction recovery rate and complex pre-treatment of matrine and oxymatrine, so that the symmetrical peak shape and strong anti-interference ability of matrine and oxymatrine.
Publication Date
4-30-2024
First Page
89
Last Page
94
DOI
10.13652/j.spjx.1003.5788.2023.80672
Recommended Citation
Jine, SHI; Hongyu, ZHANG; Ruozhu, XIN; Mei, DING; and Guangsheng, XI
(2024)
"Determination the residues of matrine and oxymatrine in Liupao tea by UPLC-MS/MS with isotope internal standard method,"
Food and Machinery: Vol. 40:
Iss.
3, Article 12.
DOI: 10.13652/j.spjx.1003.5788.2023.80672
Available at:
https://www.ifoodmm.cn/journal/vol40/iss3/12
References
[1] 张勇. 安徽省郎溪县茶树病虫害统防统治与绿色防控融合示范研究[J]. 农家参谋, 2022(17): 58-60.
ZHANG Y. Demonstration study on the integration of integrated control and green control of tea plant diseases and pests in Langxi County, Anhui Province[J]. The Farmers Consultant, 2022(17): 58-60.
[2] 汪敏. 茶树病虫害检测及防治信息挖掘与可视化分析[D]. 合肥: 安徽农业大学, 2020: 1-3.
WANG M. Tea tree diseases and insect pests detection and centrol information mining and visual analysis[D]. Hefei: Anhui Agricultural University, 2020: 1-3.
[3] 陈文义. 常宁市茶树病虫害综合防治系统研究与设计[D]. 长沙: 中南林业科技大学, 2019: 1-6.
CHEN W Y. Research and design of integrated pest control system for tea plant in Changning city[D]. Changsha: Central South University of Forestry and Technology, 2019: 1-6.
[4] 程长松, 饶漾萍, 李罡, 等. 性引诱剂与苦参碱组合防治茶毛虫效果[J]. 湖北植保, 2022(1): 30-32.
CHENG C S, RAO Y P, LI Z, et al. Effect of sex attractant combined with matrine on controlling tea caterpillar[J]. Hubei Plant Protection, 2022(1): 30-32.
[5] 吴庆丽, 秦刚, 黄艳飞, 等. 3种植物源农药对茶尺蠖的防治效果[J]. 农药, 2020, 59(5): 379-381.
WU Q L, QIN G, HUANG Y F, et al. Efficacy of three botanical insecticides against ectropis oblique prout[J]. Agrochemicals, 2020, 59(5): 379-381.
[6] 龙同, 乐群芬, 杨国琼, 等. 几种杀虫剂对茶丽纹象甲的室内、田间药效比较试验[J]. 湖北农业科学, 2019, 58(24): 109-112.
LONG T, LE Q F, YANG G Q, et al. The laboratory and field comparative effects of several pesticides against myllocerinus aurolineatus[J]. Hubei Agricultural Sciences, 2019, 58(24): 109-112.
[7] 王礼中, 姚惠明, 唐美君, 等. 几种新药剂对茶叶瘿螨的防治效果[J]. 中国茶业, 2022, 44(2): 56-58.
WANG L Z, YAO H M, TANG M J, et al. The control effects of several new pesticides on calacarus carinatus[J]. China Tea, 2022, 44(2): 56-58.
[8] HOU R Y, JIAO W T, QIAN X S, et al. Effective extraction method for determination of neonicotinoid residues in tea[J]. Journal of Agricultural and Food Chemistry, 2013, 61(51): 12 565-12 571.
[9] LI S C, LU M, SUN Z Q, et al. Optimization of osthole in the lactone ring: Structural elucidation, pesticidal activities, and control efficiency of osthole ester derivatives[J]. Journal of Agricultural and Food Chemistry, 2021, 69(23): 6 465-6 474.
[10] YAN S, HU Q, JIANG Q H, et al. Simple osthole/nanocarrier pesticide efficiently controls both pests and diseases fulfilling the need of green production of strawberry[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 36 350-36 360.
[11] ISMAN M. Botanical insecticides: A global perspective[J]. ACS Symp, 2014, 1 172: 21-30.
[12] BLOOMQUIST J, JIANG S Y, JENNINA T W, et al. Insecticidal activity and physiological actions of matrine, a plant natural product[J].Advances in the Biorational Control of Medical and Veterinary Pests, 2018, 1 289: 175-186.
[13] XU H, XU M, SUN Z Q, et al. Preparation of matrinic/oxymatrinic amide derivatives as insecticidal/ acaricidal agents and study on the mechanisms of action against tetranychus cinnabarinus[J]. Journal of Agricultural and Food Chemistry, 2019, 67: 12 182-12 190.
[14] ZOU J B, ZHAO L H, YI P, et al. Quinolizidine alkaloids with antiviral and insecticidal activities from the seeds of sophora tonkinensis gagnep[J]. Journal of Agricultural and Food Chemistry, 2020, 68(50): 15 015-15 026.
[15] PAN Q M, LI Y H, HUA J, et al. Antiviral matrine-type alkaloids from the rhizomes of sophora tonkinensis[J]. Journal of Natural Products, 2015, 78(7): 1 683-1 688.
[16] 郭秋平, 金若敏. 苦参碱和氧化苦参碱致小鼠肝毒性比较[J]. 中国药理学与毒理学志, 2016, 30(7): 736-740.
GUO Q P, JIN R M. Comparison of liver toxicity of matrine and oxymatrine in mice[J]. Chin J Pharmaco Toxicol, 2016, 30(7): 736-740.
[17] 赵岩, 杨丹, 邸子真, 等. LC-MS/MS法测定苦参提取物中苦参碱和氧化苦参碱的质量浓度[J]. 现代生物医学进展, 2021, 21(14): 2 792-2 796.
ZHAO Y, YANG D, DI Z Z, et al. LC-MS/MS determination of the concentration for matrine and oxymatrine in sophora flavescens extract[J]. Progress in Modern Biomedicine, 2021, 21(14): 2 792-2 796.
[18] 孙扬, 徐应明, 秦冬梅, 等. 苦参碱在黄瓜和土壤中的检测方法及其残留动态研究[J]. 农业环境科学学报, 2010, 29(4): 686-691.
SUN Y, XU Y M, QIN D M, et al. Residue detection and degradation of matrine in cucumber and soil[J]. Journal of Agro-Environment Science, 2010, 29(4): 686-691.
[19] 门磊, 张梦莹, 胡文忠. 高效液相色谱法同时测定复方木鸡颗粒中金雀花碱、苦参碱、槐果碱和槲皮苷的含量[J]. 沈阳药科大学学报, 2020, 37(2): 131-135.
MEN L, ZHANG M Y, HU W Z. Simultaneous determination of cytosine, matrine, sophocarpine and quercitrin in Fufang Muji granules by HPLC[J]. Journal of Shenyang Pharmaceutical University, 2020, 37(2): 131-135.
[20] 吴惠勤, 张春华, 黄晓兰, 等. 气相色谱—串联质谱法同时检测尿液中15种有毒生物碱[J]. 分析测试学报, 2013, 32(9): 1 031-1 037.
WU H Q, ZHANG C H, HUANG X L, et al. Simultaneous determination of 15 toxic alkaloids in urine by gas chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2013, 32(9): 1 031-1 037.
[21] 陈红平, 刘新, 汪庆华, 等. 液相色谱—串联质谱法与气相色谱—串联质谱法测定茶叶中苦参碱残留量[J]. 分析测试学报, 2010, 29(12): 1 162-1 167.
CHEN H P, LIU X, WANG Q H, et al. Determination of matrine residue in tea using liquid chromatography-tandem mass spectrometry or gas chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2010, 29(12): 1 162-1 167.
[22] 周鹏, 黄芊, 欧阳立群. 超高效液相色谱—串联质谱法测定茶叶中9种天然植物源农药残留量[J]. 质谱学报, 2020, 41(5): 490-501.
ZHOU P, HUANG Q, OUYANG L Q. Determination of nine botanical pesticide residues in tea by UHPLC-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(5): 490-501.
[23] 荆辉华, 向俊, 蒋登辉, 等. 蜂蜜中苦参碱与氧化苦参碱的快速检测[J]. 食品与机械, 2022, 38(7): 57-63.
JING H H, XIANG J, JIANG D H, et al. Rapid deterrination of matrine and oxymatrine in honey[J]. Food & Machinery, 2022, 38(7): 57-63.
[24] 李丽. 液相色谱串接质谱仪测定有机茶叶中的苦参碱与氧化苦参碱[J]. 化工设计通讯, 2022, 48(1): 96-99.
LI L. Determination of matrine and oxymatrine in organic tea by liquid chromatography coupled with mass spectrometer[J]. Chemical Engineering Design Communications, 2022, 48(1): 96-99.
[25] 沈沛霖, 钱圆, 卫严冰, 等. 超高效液相色谱—串联质谱法分析柑橘及土壤中苦参碱残留[J]. 浙江农业科学, 2018, 59 (3): 501-503.
SHEN P L, QIAN Y, WEI Y B,et al. Determination of matrine residues in citrus and soil by ultra performance liquid chromatography tandem mass spectrometry[J]. Zhejiang Agricultural Science, 2018, 59(3): 501-503.
[26] 刘颖, 石璐, 魏永辉, 等. 超高效液相色谱—串联质谱法测定蔬菜水果中苦参碱残留量[J]. 食品安全质量检测学报, 2022, 13(9): 2 871-2 878.
LIU Y, SHI L, WEI Y H, et al. Determination of matrine residues in vegetables and fruits by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality, 2022, 13(9): 2 871-2 878.