•  
  •  
 

Corresponding Author(s)

田建艳(1966—),女,太原理工大学教授,博士生导师,博士。E-mail: tut_tianjy@163.com

Abstract

Objective: To solve the problems of low level of automation and high labor intensity of workers in the fermented grains discharging process of solid-state fermentation in the ground-pot. Methods: An automatic fermented grains scooping strategy for the compound robot for fermented grains scooping was proposed. Based on the pre-processing of the ground-pot image and the reconstruction of the point cloud inside the inner edge, the point cloud segmentation algorithm was used to extract the point cloud of fermented grains. The scooping plane was constructed. The safe working distance for scooping was solved. Preset scooping points were set. Afterwards, the scooping amount of the preset scooping point was evaluated by the pixel surface element voxel algorithm, to select the optimal scooping point. Results: The method of planning the scooping point based on the safe working distance is reasonable, which ensures that the bucket does not collide with the ground-pot wall while scooping fermented grains from the wall at different depths of the scooping plane. The strategy can effectively reduce the number of robot scooping, thereby improving the efficiency of fermented grains scooping. Conclusion: The strategy can effectively guide the compound robot to realize the automatic and intelligent fermented grains discharging.

Publication Date

4-30-2024

First Page

110

Last Page

119

DOI

10.13652/j.spjx.1003.5788.2023.80443

References

[1] 庆毅辉, 王淑青, 张子蓬, 等. 上甑机器人运动学分析及轨迹研究[J]. 食品与机械, 2020, 36(12): 70-73. QING Y H, WANG S Q, ZHANG Z P, et al. Kinematics analysis and trajectory research for upper-retort-robot[J]. Food & Machinery, 2020, 36(12): 70-73.
[2] 田万春, 张贵宇, 庹先国, 等. 基于支持向量机的白酒上甑探汽方法研究[J]. 食品与机械, 2020, 36(1): 79-83, 103. TIAN W C, ZHANG G Y, TUO X G, et al. Study on steam detection method of Chinese spirits steamer-filling operation based on support vector machine[J]. Food & Machinery, 2020, 36(1): 79-83, 103.
[3] 张广河, 张鸿浩, 张宏伟. 一种酒醅出窖装置: CN213596246U[P]. 2021-07-02. ZHANG G H, ZHANG H H, ZHANG H W. A device for fermenting grains to leave pits: CN213596246U[P]. 2021-07-02.
[4] 张五九, 韩兴林, 郝建秦, 等. 一种酒醅出醅方法及其出醅装置: CN103361220A[P]. 2013-10-23. ZHANG W J, HAN X L, HAO J Q, et al. A method for discharging fermenting grains and its discharging device: CN103361220A[P]. 2013-10-23.
[5] 何文浩, 宋海涛, 宋金连. 醅料出缸设备: CN113667555A[P]. 2021-11-19. HE W H, SONG H T, SONG J L. Equipment for discharging fermenting grains: CN113667555A[P]. 2021-11-19.
[6] 尉小雪, 王素钢, 王晓宇, 等. 一种用于地缸发酵工艺的取料复合机器人: CN216328365U[P]. 2022-04-19. YU X X, WANG S G, WANG X Y, et al. A extracting compound robot for fermentation process in ground-pot: CN216328365U[P]. 2022-04-19.
[7] CLARKE S, RHODES T, ATKESON C G, et al. Learning audio feedback for estimating amount and flow of granular material[C]// LEVINE S, VANHOUCKE V, GOLDBERG K. Proceedings of the 2nd Conference on Robot Learning: Proceedings of Machine Learning Research. Mountain View: PMLR, 2018: 529-550.
[8] TAKAHASHI K, KO W, UMMADISINGU A, et al. Uncertainty-aware self-supervised target-mass grasping of granular foods[C]// HUTCHINSON S, PARK F, LI Z, et al. 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi'an: IEEE, 2021: 2 620-2 626.
[9] SCHENCK C, TOMPSON J, FOX D, et al. Learning robotic manipulation of granular media[C]// LEVINE S, VANHOUCKE V, GOLDBERG K. Proceedings of the 1st Annual Conference on Robot Learning: Proceedings of Machine Learning Research. Mountain View: PMLR, 2017: 239-248.
[10] 曹小华, 胡金涛. 基于三维感知技术的卸船机取料点连续自动定位方法[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(1): 77-81. CAO X H, HU J T. Continuous automatic positioning for reclaiming point of grab ship unloader based on 3D perception technology[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2013, 37(1): 77-81.
[11] 赵建平, 汪永超, 张莹, 等. 智能调料机设计与研究[J]. 食品与机械, 2014, 30(5): 154-157. ZHAO J P, WANG Y C, ZHANG Y, et al. Design of automatic seasoning-discharging machine[J]. Food & Machinery, 2014, 30(5): 154-157.
[12] 蔡威. 全自动垃圾搬运起重机控制系统的若干关键技术研究[D]. 武汉: 武汉理工大学, 2014: 16-26. CAI W. Research of key technologies for garbage handling crane's control system[D]. Wuhan: Wuhan University of Technology, 2014: 16-26.
[13] 钟星, 邵辉, 叶贤成. 多障碍物环境下挖掘机的连续避障轨迹规划[J]. 计算机工程与科学, 2018, 40(7): 1 310-1 315. ZHONG X, SHAO H, YE X C. Trajectory planning with continuous obstacle avoidance for an excavator in multi-obstacle environment[J]. Computer Engineering & Science, 2018, 40(7): 1 310-1 315.
[14] 陆成浩. 基于双目视觉的智能化抓斗卸船机关键技术研究[D]. 武汉: 武汉理工大学, 2020: 44-79. LU C H. Research on key technologies of intelligent grab ship unloader based on binocular vision[D]. Wuhan: Wuhan University of Technology, 2020: 44-79.
[15] 张鑫. 大曲清香白酒不同发酵容器酿酒情况对比[J]. 酿酒, 2020, 47(1): 77-78. ZHANG X. Comparison of Fen flavor liquor making situation in different fermentative vessels[J]. Liquor Making, 2020, 47(1): 77-78.
[16] 赵景龙, 韩兴林, 杨海存, 等. 清香型大曲白酒地缸发酵机理[J]. 食品与发酵工业, 2013, 39(11): 81-84. ZHAO J L, HAN X L, YANG H C, et al. Preliminary research on fermentation mechanization of Fen-flavor's ground-pot[J]. Food and Fermentation Industries, 2013, 39(11): 81-84.
[17] 李忠虎, 薛婉婷, 吕鑫, 等. 基于图像融合的风电塔筒边缘检测及提取方法[J]. 国外电子测量技术, 2022, 41(3): 90-95. LI Z H, XUE W T, LU X, et al. Edge detection and extraction method of wind turbine tower based on image fusion[J]. Foreign Electronic Measurement Technology, 2022, 41(3): 90-95.
[18] 张苏楠. 生猪异常行为多源监测及其信息融合方法的研究与应用[D]. 太原: 太原理工大学, 2020: 26-29. ZHANG S N. Information fusion method research and application on multi-source monitoring of porcine abnormal[D]. Taiyuan: Taiyuan University of Technology, 2020: 26-29.
[19] 王书宇, 田建艳, 蔡文站, 等. 基于孔特征的弱纹理堆叠工件识别[J]. 计算机工程与应用, 2022, 58(3): 282-288. WANG S Y, TIAN J Y, CAI W Z, et al. Recognition of stacked texture-less workpieces based on hole features[J]. Computer Engineering and Applications, 2022, 58(3): 282-288.
[20] KLEFF S, LI N. Robust motion planning in dynamic environments based on sampled-data Hamilton-Jacobi reachability[J]. Robotica, 2020, 38(12): 2 151-2 172.
[21] RICHARD S, ROMAN R. The role of a behavioural model for the virtual commissioning of robotic manufacturing systems[J]. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 2022, 30(50): 45-52.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.