Abstract
Objective: To explore the effects of Brassica rapa L. acid polysaccharide 1 (BRAP-1) on H226 cell tumor-bearing mice. Methods: 60 mice were divided into the model group (0.1 mL/10 g), positive cisplatin [3 mg/(kg·2 d)], BRAP-1 low dose [50 mg/(kg·d)], BRAP-1 medium dose [100 mg/(kg·d)] and BRAP-1 high dose [200 mg/(kg·d)]. During the experiment, the tumor growth of mice was observed, and the tumor inhibition rate and organ index were calculated; The levels of interleukin-18 (IL-18), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in serum were detected by enzyme-linked immunosorbent assay. The gene expressions of IL-18, IL-1β, RIP-1(receptor-interacting protein-1), RIP3 and MLKL (mixed-lineage kinase domain-like protein 3) were detected by Real-time Quantitative PCR (q-PCR) and Western blot (WB). Results: Compared with the model group, the low and middle dose of BRAP-1 groups had significant tumor inhibition effects (P<0.05), and the positive group and the high dose of BRAP-1 group had significant tumor inhibition effects (P<0.01). Compared with other groups in the model group, the serum levels of IL-1β in the positive group and the high dose of BRAP-1 group were significantly increased (P<0.01), IL-18 and TNF-α were significantly decreased in the positive group (P < 0.05), and were significantly increased in each dose of BRAP-1 group (P < 0.01). The results of q-PCR and Western blot showed that compared with the model group, the relative expression of IL-1β mRNA decreased with the increase of BRAP-1 dose (P<0.01), while the relative expression of IL-18, MLKL, RIP1, and RIP3 mRNA and protein increased (P<0.01). Conclusion: BRAP-1 can inhibit the growth of lung squamous carcinoma H226 cells by regulating the necrotizing apoptosis-related proteins MLKL, RIP1, and RIP3 and regulating immune cytokine levels.
Publication Date
4-30-2024
First Page
149
Last Page
155
DOI
10.13652/j.spjx.1003.5788.2023.80596
Recommended Citation
Gulimila, KADEER; Amannisa, MAITIRUZE; Mingzhu, LI; Jinsen, KANG; and Hailiqian, TAOERDAHONG
(2024)
"The antitumor activity of Brassica rapa L. acid polysaccharides in vivo,"
Food and Machinery: Vol. 40:
Iss.
3, Article 21.
DOI: 10.13652/j.spjx.1003.5788.2023.80596
Available at:
https://www.ifoodmm.cn/journal/vol40/iss3/21
References
[1] 唐伟敏, 金露, 谢亮华, 等. 芜菁多糖的分离纯化、化学结构及其抗疲劳动物试验研究[J]. 中国食品学报, 2018, 18(12): 22-31.
TANG W M, JIN L, XIE L H, et al. Isolation, purification, chemical structure and fatigue resistance research of Brassica rapa L. polysaccharides[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(12): 22-31.
[2] 候宝林. 维药恰麻古儿多糖抗氧化及抗肿瘤作用的实验研究[D]. 乌鲁木齐: 新疆医科大学, 2010: 12-36.
HOU B L. Experimental study on the antioxidant and antitumor effects of Brassica rapa L. polysaccharide[D]. Urumqi: Xinjiang Medical University, 2010: 12-36.
[3] 王花, 吴萍, 文绍敦. 高原玉树地区药食两用植物芜菁的抗衰老作用[J]. 中国老年学杂志, 2012, 32(11): 2 328-2 329.
WANG H, WU P, WEN S D. Anti-aging effect of Brassica rapa L. in the plateau Yushu region[J]. Chinese Journal of Gerontology, 2012, 32(11): 2 328-2 329.
[4] CHEN Z E, WUFUER R, JI J H, et al. Structural characterization and immunostimulatory activity of polysaccharides from Brassica rapa L[J]. J Agric Food Chem, 2017, 65(44): 9 685-9 692.
[5] 李亚童, 阿依夏古丽·巴卡斯, 李改茹, 等. 新疆芜菁酸性多糖分离纯化、抗氧化活性研究及红外表征[J]. 食品安全质量检测学报, 2022, 13(4): 1 050-1 057.
LI Y T, BAKASI A Y X G L, LI G R, et al. Isolation and purification, antioxidant activity and infrared characterization of Brassica rapa L. acid polysaccharide in Xinjiang[J]. Journal of Food Safety & Quality, 2022, 13(4): 1 050-1 057.
[6] XU Y, WU Y J, SUN P L, et al. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2019, 132: 970-977.
[7] 阿依夏古丽·巴卡斯, 胡晟, 陈莉, 等. 芜菁酸性多糖BRAP-2体内抗Lewis肺癌活性研究[J]. 食品安全质量检测学报, 2019, 10(15): 5 111-5 116.
BAKASI A Y X G L, HU S, CHEN L, et al. In vivo anti-Lewis lung cancer activity of the Brassica rapa L. acid polysaccharide BRAP-2[J]. Journal of Food Safety & Quality, 2019, 10(15): 5 111-5 116.
[8] 艾克拜尔江·阿巴斯, 李冠, 王静. 新疆芜菁多糖降血糖作用的研究[J]. 新疆农业科学, 2011, 48(3): 471-479.
ABASI A K B E J, LI G, WANG J. Study on the hypoglycemic effect of Brassica rapa L. polysaccharide in Xinjiang[J]. Xinjiang Agricultural Sciences, 2011, 48(3): 471-479.
[9] 古丽米拉·卡德尔, 阿吉然姆·阿布拉, 任国瑞, 等. 芜菁多糖除蛋白及抑制RAW264.7巨噬细胞焦亡作用研究[J]. 食品安全质量检测学报, 2023, 14(2): 183-190.
KADEER G L M L, ABULA A J R M, REN G R, et al. Deproteinization, effect of Brassica rapa L. polysaccharide and inhibiting pyroptosis in RAW264.7 macrophages[J]. Journal of Food Safety & Quality, 2023, 14(2): 183-190.
[10] 海力茜·陶尔大洪, 李欢欢, 任国瑞, 等. 芜菁中性多糖对PC12细胞氧化损伤保护作用机制的初步研究[J]. 天然产物研究与开发, 2023, 35(5): 852-857.
TAOERDAHONG H L Q, LI H H, REN G R, et al. Preliminary study of the mechanism of Brassica rapa L. neutral polysaccharide on oxidative damage protection in PC12 cells[J]. Natural Product Research and Development, 2023, 35(5): 852-857.
[11] 李欢欢, 陈春丽, 海力茜·陶尔大洪. 芜菁中性多糖对D-半乳糖致衰老小鼠的抗氧化作用[J]. 食品科技, 2021, 46(5): 168-173.
LI H H, CHEN C L, TAOERDAHONG H L Q. Antioxidative effects of Brassica rapa L. neutral polysaccharide on D-galactose-induced aging mice[J]. Food Science and Technology, 2021, 46(5): 168-173.
[12] GONG Y T, FAN Z Y, LUO G P, et al. The role of necroptosis in cancer biology and therapy[J]. Mol Cancer, 2019(18): 100.
[13] CHEN J, KOS R, GARSSEN J, et al. Molecular insights into the mechanism of necroptosis: The necrosome as a potential therapeutic target[J]. Cells, 2019(8): 1 486.
[14] QIN X, MA D, TAN Y X, et al. The role of necroptosis in cancer: A double-edged sword? [J]. Biochim Biophys Acta Rev Cancer, 2019, 1 871: 259-266.
[15] CHOI M E, PRICE D R, RYTER S W, et al. Necroptosis: A crucial pathogenic mediator of human disease[J]. JCI Insight, 2019(4): e128834.
[16] ONIZAWA M. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis[J]. Nat Immunol, 2015(16): 618-627.
[17] LIU Z Y. Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice[J]. Am J Cancer Res, 2015(5): 3 174-3 185.
[18] YUAN J, AMIN P, OFENGEIM D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases[J]. Nat Rev Neurosci, 2019(20): 19-33.
[19] HAN R S, GUO H Y, SHI J P, et al. Tumour microenvironment changes after osimertinib treatment resistance in non-small cell lung cancer[J]. European Journal of Cancer, 2023, 189: 112919.
[20] YUKA M, SEIJI Y, HISATSUGU G, et al. ZD6474, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, inhibits growth of experimental lung metastasis and production of malignant pleural effusions in a non-small cell lung cancer model[J]. Oncology Research, 2006, 16(1): 15-26.
[21] 张文超. 黄腐酚调节Th1/Th2平衡促进小鼠抗肿瘤免疫[D]. 兰州: 兰州大学, 2016: 10-17.
ZHANG W C. Poranl regulates Th1/Th2 balance to promote anti-tumor immunity in mice[D]. Lanzhou: Lanzhou University, 2016: 10-17.
[22] 王胜奇, 李晶, 王能, 等. 死亡细胞释放信号对肿瘤进展的影响及中医药干预[J]. 中华中医药学刊, 2023, 41(6): 26-31.
WANG S Q, LI J, WANG N, et al. Effect of dead cells on tumor progression and TCM intervention[J]. Chinese Archives of Traditional Chinese Medicine, 2023, 41(6): 26-31.
[23] SHOWALTER A, LIMAYE A, OYER J L, et al. Cytokines in immunogenic cell death: Applications for cancer immunotherapy[J]. Cytokine, 2017, 97: 123-132.
[24] DE SOUSA E, LRIAS J R, BELTRAN A, et al. Targeting neoepitopes to treat solid malignancies: Immunosurgery[J]. Front Immunol, 2022, 12: 592031.
[25] CAI J Y, ZHONG M J, XU J H, et al. Codelivery of triptolide and IFN-γ to boost antitumor immunity for triple-negative breast cancer[J]. Int Immunopharmacol, 2023, 120: 110346.
[26] 凌晓颖, 丁雅荔, 陶嘉磊, 等. 清肺口服液黄酮类成分对呼吸道合胞病毒感染小鼠坏死性凋亡的影响[J]. 中草药, 2022, 53(13): 4 019-4 027.
LING X Y, DING Y L, TAO J L, et al. Effect of flavonoid components of clear lung oral fluid on necrotizing apoptosis in respiratory syncytial virus-infected mice[J]. Chinese Traditional and Herbal Drugs, 2022, 53(13): 4 019-4 027.
[27] 宋瑞婧, 张欣欣, 高飞, 等. 加味升降散通过介导RIP1/RIP3/MLKL通路抑制坏死性凋亡减轻糖尿病肾病大鼠肾脏纤维化[J]. 中国实验方剂学杂志, 2022, 28(17): 33-42.
SONG R J, ZHANG X X, GAO F, et al. Flavoring and relieving renal fibrosis by inhibiting necrotizing apoptosis by mediating RIP1/RIP3/MLKL pathway to reduce renal fibrosis in rats with diabetic nephropathy[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(17): 33-42.
[28] 程婷婷, 李岩, 陈贵元. 地参多糖对非小细胞肺癌A549细胞抗肿瘤作用及机制[J]. 中国实验方剂学杂志, 2022, 28(3): 83-90.
CHENG T T, LI Y, CHEN G Y. Antitumor effects and mechanisms of ground reference polysaccharide in non-small cell lung cancer A549 cells[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(3): 83-90.
[29] 吴芳霞. 魔芋葡甘聚糖的氧化改性及相关糖醛酸寡糖的抗阿尔兹海默症构效关系研究[D]. 苏州: 苏州大学, 2022: 26-30.
WU F X. Oxidative modification of konjac glucomannan and related gluconacid oligosaccharides against Alzheimer's disease[D]. Suzhou: Suzhou University, 2022: 26-30.
[30] 刘华英, 夏雪, 张孟维, 等. 双脱甲氧基姜黄素通过调节HIF-1α介导衰老诱导非小细胞肺癌细胞凋亡并抑制细胞增殖[J]. 中国癌症防治杂志, 2023, 15(3): 291-297.
LIU H Y, XIA X, ZHANG M W, et al. Bisdesethoxycurcumin induces apoptosis in non-small cell lung cancer cells and suppresses cell proliferation by regulating HIF-1α[J]. Chinese Journal of Oncology Prevention and Treatment, 2023, 15(3): 291-297.
[31] 唐健波, 吕都, 潘牧, 等. 微波辅助提取刺梨多糖工艺优化及抗肿瘤活性研究[J]. 食品与机械, 2021, 37(9): 160-167.
TANG J B, LU D, PAN M, et al. Optimization on microwave-assisted extraction of Rosa Roxburghii Tratt polysaccharide and its antitumor activity[J]. Food & Machinery, 2021, 37(9): 160-167.
[32] WUFUER R Z Y M, BAI J, LIU Z, et al. Biological activity of Brassica rapa L. polysaccharides on RAW264.7 macrophages and on tumor cells[J]. Bioorg Med Chem, 2020, 28(7): 115330.
[33] 王迪, 李钧, 侯兵乔, 等. 中药多糖对肿瘤微环境中免疫细胞调节作用研究进展[J]. 中草药, 2023, 54(13): 4 346-4 358.
WANG D, LI J, HOU B Q, et al. Progress in the regulation of TCM polysaccharides on immune cells in tumor microenvironment[J]. Chinese Traditional and Herbal Drugs, 2023, 54(13): 4 346-4 358.
[34] LIN S R, CHANG C H, HSU C F, et al. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence[J]. Br J Pharmacol, 2020, 177(6): 1 409-1 423.
[35] PANG Y L, LIN Y S, WANG X Q, et al. Inhibition of abnormally activated HIF-1α-GLUT1/3-glycolysis pathway enhances the sensitivity of hepatocellular carcinoma to 5-caffeoylquinic acid and its derivatives[J]. Eur J Pharmacol, 2022, 920: 174844.
[36] DEMARCO B, GRAYCZYK J P, BJANES E, et al. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality[J]. Sci Adv, 2020, 6(47): eabc3465.
[37] MARTINEZ-OSORIO V, ABDELWAHAB Y, ROS U. The many faces of MLKL, the executor of necroptosis[J]. Int J Mol Sci, 2023, 24(12): 10108.