Abstract
Objective: This study aimed to explore the copigmentation formula of purple corn anthocyanins. Methods: In this study, fructose, tannic acid, and pectin were used as co-pigmentation. The response surface method was used to optimize the co-pigmentation formula of purple corn anthocyanins, and the untreated purple corn was used as a control test. The anthocyanin components, color, texture, taste and antioxidant activity (DPPH free radical scavenging ability, ABTS free radical scavenging ability, and FRAP iron ion reducing ability) of purple corn after different treatments were determined. Results: 19% fructose, 0.07% tannic acid, and 1.9% pectin had the best copigmentation effect. Compared with the control group, the contents of cyanidin-3-O-glucoside, geranium-3-O-glucoside, and peony-3-O-glucoside in purple corn increased by 77.64%, 64.82%, and 54.75%, respectively. The total anthocyanin content increased by 67.98%. The L* value, b* value, and ΔE value of color decreased, while the a* value increased. Hardness, adhesiveness, and chewing type increased, while elasticity and cohesion decreased. The bitter, astringent, and astringent aftertastes differ slightly, as do the sour, sweet, salty, umami, bitter, and umami aftertastes. In the mass concentration range of 0.02~0.10 mg/mL, the DPPH free radical scavenging ability, ABTS free radical scavenging ability and FRAP iron ion reducing ability of purple corn anthocyanins were 39%~79%, 54%~74% and 27%~67%, respectively. Conclusion: The co-pigmentation effect of 19% fructose, 0.07% tannic acid, and 1.9% pectin on purple corn anthocyanins was the best.
Publication Date
4-30-2024
First Page
196
Last Page
202,216
DOI
10.13652/j.spjx.1003.5788.2023.80505
Recommended Citation
Wenqian, PANG; Rui, YU; Dajing, LI; Chunju, LIU; and Bing, BAI
(2024)
"Optimization of anthocyanin copigmentation formula of purple corn and its effect on the quality of purple corn,"
Food and Machinery: Vol. 40:
Iss.
3, Article 27.
DOI: 10.13652/j.spjx.1003.5788.2023.80505
Available at:
https://www.ifoodmm.cn/journal/vol40/iss3/27
References
[1] 郝小琴, 梁树辉, 赵文涛, 等. 紫黑甜糯玉米花青素含量研究[J]. 现代农业科技, 2019, 33(15): 21-26.
HAO X Q, LIANG S H, ZHAO W T, et al. Study on anthocyanin content of purple-black and sweet-waxy corn[J]. Modern Agricultural Science and Technology, 2019, 33(15): 21-26.
[2] AOKI H, KUZE N, KATO Y, et al. Anthocyanin isolated from purple corn (Zea mays L) [J]. Foods and Food Ingredients Journal of Japan, 2001, 32(3): 23-36.
[3] PHILLIPS G F, GARDINER J. The chromatographic identification of psychotropic drugs[J]. Journal of Pharmacy and Pharmacology, 2011, 21(12): 793-807.
[4] URSU M G S, MILEA S A, PACULARU-BURADA B, et al. Optimizing of the extraction conditions for anthocyanin's from purple corn flour (Zea mays L): Evidences on selected properties of optimized extract[J]. Food Chemistry: X, 2023, 17: 100521.
[5] DAO L T, TAKEOKA G R, EDWARDS R H, et al. Improved method for the stabilization of anthocyanidins[J]. Journal of Agricultural and Food Chemistry, 1998, 46(9): 3 564-3 569.
[6] ESCRIBANO B, MAITE T. Anthocyanin copigmentation-evaluation, mechanisms and implications for the colour of red wines[J]. Current Organic Chemistry, 2012, 16(6): 715-723.
[7] 卢钰, 董现义, 杜景平, 等. 花色苷研究进展[J]. 山东农业大学学报(自然科学版), 2004(2): 315-320.
LU Y, DONG X Y, DU J P, et al. The research progress of anthocyanins[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2004(2): 315-320.
[8] FERNANDES A, BRAS N F, OLIVEIRA J, et al. Impact of a pectic polysaccharide on oenin copigmentation mechanism[J]. Food Chemistry, 2016, 209(15): 17-26.
[9] BUCHWEITZ M, SPETH M, KAMMERER D R, et al. Impact of pectin type on the storage stability of black currant (Ribes nigrum L.) anthocyanins in pectic model solutions[J]. Food Chemistry, 2013, 139(4): 1 168-1 178.
[10] 管敬喜, 文仁德, 成果, 等. 野生毛葡萄皮渣花色苷稳定性研究[J]. 食品科技, 2017, 42(12): 210-214.
GUAN J X, WEN R D, CHENG G, et al. Study on the stability of anthocyanin in wild grape skin pomace[J]. Food Science and Technology, 2017, 42(12): 210-214.
[11] 楼乐燕, 岳阳, 尹培, 等. 单宁酸和绿原酸对杨梅花色苷的辅色作用[J]. 食品与发酵工业, 2019, 45(4): 74-80.
LOU L Y, YUE Y, YIN P, et al. The copigmentation effect of tannic acid and chlorogenic acid on anthocyanin of bayberry[J]. Food and Fermentation Industries, 2019, 45(4): 74-80.
[12] 麦日艳古·亚生, 蒋耀英, 刘小莉, 等. 不同胶体对黑莓果汁花色苷稳定性的影响研究[J]. 食品工业科技, 2021, 42(5): 11-17.
MAIRIYANGU Y S, JIANG Y Y, LIU X L, et al. Effects of different colloids on the stability of anthocyanins in blackberry juice[J]. Science and Technology of Food Industry, 2021, 42(5): 11-17.
[13] 李华, 康文怀, 陶永胜, 等. 微氧处理对赤霞珠葡萄酒多酚及其品质的影响[J]. 江苏大学学报(自然科学版), 2006, 27(5): 401-404.
LI H, KANG W H, TAO Y S, et al. Effect of micro-oxygen treatment on polyphenols and quality of cabernet sauvignon wine[J]. Journal of Jiangsu University (Natural Science Edition), 2006, 27(5): 401-404.
[14] 孟俊文, 田翔. HPLC测定紫玉米中花青素的含量[J]. 现代农业科技, 2020(17): 210-211.
MENG J W, TIAN X. Determination of anthocyanin content in purple corn by HPLC[J]. Modern Agricultural Science and Technology, 2020(17): 210-211.
[15] 胡丽丽, 牛丽影, 李大婧, 等. 质构仪探头选择及样品处理对草莓脯TPA测定结果的影响[J]. 食品研究与开发, 2022, 43(5): 170-176.
HU L L, NIU L Y, LI D J, et al. Effect of texture instrument selection and sample treatment on TPA measurements of strawberry preserves[J]. Food Research and Development, 2022, 43(5): 170-176.
[16] 许雅楠, 连建梅, 范群艳, 等. 电子舌在燕窝新品开发配料选择上的应用[J]. 食品安全质量检测学报, 2022, 13(10): 3 375-3 382.
XU Y N, LIAN J M, FAN Q Y, et al. The application of electronic tongue in ingredient selection for new product development of bird's nest[J]. Journal of Food Safety & Quality, 2022, 13(10): 3 375-3 382.
[17] 张钟元, 朱翠平, 李大婧, 等. 不同干燥方式对牛蒡片多酚含量及抗氧化能力的影响[J]. 江苏农业学报, 2018, 34(1): 172-178.
ZHANG Z Y, ZHU C P, LI D J, et al. Effects of different drying methods on polyphenol content and antioxidant capacity of burdock chips[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(1): 172-178.
[18] 孙祎振, 赵淼, 吴洪婕, 等. 不同品种类型玉米口感与营养及风味品质的比较[J]. 作物研究, 2011, 25(6): 556-558.
SUN Y Z, ZHAO M, WU H J, et al. Comparison of taste, nutrition and flavor quality of different varieties of corn[J]. Crop Research, 2011, 25(6): 556-558.
[19] DARAVINGAS G, CAIN R F. Thermal degradation of black raspberry anthocyanin pigments in model systems[J]. Journal of Food Science, 1968, 33(2): 138-142.
[20] 潘颖, 高庆超, 孙晨晨, 等. 不同有机酸对紫甘蓝花色苷辅色效应及热稳定性对比分析[J]. 现代食品科技, 2021, 37(8): 97-108.
PAN Y, GAO Q C, SUN C C, et al. Comparative analysis of copigmentation effect and thermal stability of different organic acids on anthocyanin in purple cabbage[J]. Modern Food Science and Technology, 2021, 37(8): 97-108.
[21] 张慜, 廖红梅. 果蔬食品加工贮藏过程中易变色素的降解及调控机理研究与展望[J]. 中国食品学报, 2011, 11(9): 258-267.
ZHANG M, LIAO H M. Research and prospect on the degradation and regulation mechanism of volatile pigments in fruit and vegetable food during processing and storage[J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(9): 258-267.
[22] 汤月昌, 许凤, 董栓泉, 等. 果糖对西兰花抗氧化性及其品质的影响[J]. 现代食品科技, 2015, 31(4): 164-169.
TANG Y C, XU F, DONG S Q, et al. Effects of fructose on antioxidant activity and quality of broccoli[J]. Modern Food Science and Technology, 2015, 31(4): 164-169.