•  
  •  
 

Abstract

Objective: Improve the accuracy and robustness of papaya ripeness detection. Methods: A method of papaya ripeness detection based on multi-target sampling and improved Mask R-CNN was proposed. In the process of data expansion, the method introduced multi-object sampling technology to generate enhanced images from small data sets taken under controlled conditions, which was conducive to extending the proposed method to data sets with complex features of actual papaya images. The effectiveness and robustness of the proposed method were verified by means of average accuracy, accuracy, accuracy-recall curve and calculation time, and the results of papaya ripeness detection effect were compared with those of Faster R-CNN, RetinaNet and CenterMask. Results: The values of mean awerage precision, 50% mean awerage precision and 75% mean awerage precision for the papaya ripeness detection were 98.43%, 98.67% and 98.68%, respectively. The average accuracies for the ripeness detection of immature, semi-mature and mature papayas were 99.38%, 98.81% and 99.37%, respectively. Conclusion: This method can be used to develop an electronic system for papaya ripeness detection and improve the performance of papaya ripeness detection and grading.

Publication Date

4-30-2024

First Page

52

Last Page

59

DOI

10.13652/j.spjx.1003.5788.2024.60006

References

[1] 杨妮, 邓树林, 樊艳红, 等. 叶绿素荧光遥感反演及其农业监测应用研究进展[J]. 江苏农业科学, 2023, 51(14): 1-13. YANG N, DENG S L, FAN Y H, et al. Research progress of chlorophyll fluorescence retrieval by remote sensing and its application in agricultural monitoring[J]. Jiangsu Agricultural Sciences, 2023, 51(14): 1-13.
[2] 巨浩羽, 赵士豪, 赵海燕, 等. 光皮木瓜真空脉动干燥特性及神经网络模型[J]. 食品与机械, 2022, 38(3): 147-153. JU H Y, ZHAO S H, ZHAO H Y, et al. Drying characteristics of Chaenomeles sinensis with vacuum pulsed drying technology based on BP neural network mode[J]. Food & Machinery, 2022, 38(3): 147-153.
[3] 周陈平, 杨敏, 郭金菊, 等. 番木瓜成熟过程中全基因组DNA甲基化和转录组变化分析[J]. 园艺学报, 2022, 49(3): 519-532. ZHOU C P, YANG M, GUO J J, et al. Dynamic changes in DNA methylome and transcriptome patterns during papaya fruit ripening[J]. Acta Horticulturae Sinica, 2022, 49(3): 519-532.
[4] 熊俊涛, 韩咏林, 王潇, 等. 基于YOLO v5-Lite的自然环境木瓜成熟度检测方法[J]. 农业机械学报, 2023, 54(6): 243-252. XIONG J T, HAN Y L, WANG X, et al. Method of maturity detection for papaya fruits in natural environment based on YOLO v5-lite[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 243-252.
[5] SUBAN I B, PARAMARTHA A, FORWONATUS M, et al. Identification the maturity level of carica papaya using the k-nearest neighbor[J]. Journal of Physics: Conference Series, 2020, 1 577(1): 012028.
[6] RATHA A K, BARPANDA N K, SETHY P K, et al. Papaya fruit maturity estimation using wavelet and ConvNET[J]. Ingenierie des Systemes d'Information, 2023, 28(1): 175-181.
[7] BEHERA S K, RATH A K, SETHY P K. Maturity status classification of papaya fruits based on machine learning and transfer learning approach[J]. Information Processing in Agriculture, 2021, 8(2): 244-250.
[8] SHIU Y S, LEE R Y, CHANG Y C. Pineapples' detection and segmentation based on faster and mask R-CNN in UAV imagery[J]. Remote Sensing, 2023, 15(3): 814.
[9] 翁海勇, 李效彬, 肖康松, 等. 基于Mask R-CNN的柑橘主叶脉显微图像实例分割模型[J]. 农业机械学报, 2023, 54(7): 252-258, 271. WENG H Y, LI X B, XIAO K S, et al. Instance segmentation model for microscopic image of citrus main leaf vein based on mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 252-258, 271.
[10] 周燕, 韦勤彬, 廖俊玮, 等. 自然场景文本检测与端到端识别:深度学习方法[J]. 计算机科学与探索, 2023, 17(3): 577-594. ZHOU Y, WEI Q B, LIAO J W, et al. Natural scene text detection and end-to-end recognition: Deep learning methods[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594.
[11] 李聪, 喻国威, 张原嘉, 等. 基于ResNeXt与迁移学习的干制哈密大枣果梗/花萼及缺陷识别[J]. 食品与机械, 2022, 38(1): 135-140. LI C, YU G W, ZHANG Y J, et al. Research on recognition of stem/calyx and defects of dried Hami jujube based on ResNeXt and transfer learning[J]. Food & Machinery, 2022, 38(1): 135-140.
[12] 魏冉, 裴悦琨, 姜艳超, 等. 基于改进Faster R-CNN模型的樱桃缺陷检测[J]. 食品与机械, 2021, 37(10): 98-105, 201. WEI R, FEI Y K, JIANG Y C, et al. Detection of cherry defects based on improved Faster R-CNN model[J]. Food & Machinery, 2021, 37(10): 98-105, 201.
[13] 马瑞峻, 何浣冬, 陈瑜, 等. 基于改进YOLOv5的火龙果成熟度识别方法[J]. 沈阳农业大学学报, 2023, 54(2): 196-206. MA R J, HE H D, CHEN Y, et al. Recognition method for maturity of pitaya based on improved YOLOv5[J]. Journal of Shenyang Agricultural University, 2023, 54(2): 196-206.
[14] 罗鑫, 王艳艳, 刘学渊, 等. 基于深度学习的林地澳洲坚果检测识别[J]. 森林工程, 2023, 39(2): 113-120. LUO X, WANG Y Y, LIU X Y, et al. Macadamia integrifolia detection and recognition in orchards based on deep learning[J]. Forest Engineering, 2023, 39(2): 113-120.
[15] TANG Q, JIANG Y, XIN J, et al. A novel method for the recovery of continuous missing data using multivariate variational mode decomposition and fully convolutional networks[J]. Measurement, 2023, 220: 113366.
[16] 任锐, 张淑娟, 赵华民, 等. 基于机器视觉的辣椒外部品质检测[J]. 食品与机械, 2021, 37(1): 165-168. REN R, ZHANG S J, ZHAO H M, et al. Study on external quality detection of pepper based on machine vision[J]. Food & Machinery, 2021, 37(1): 165-168.
[17] 倪云峰, 叶健, 樊娇娇. 基于图像识别的水果分拣系统[J]. 江苏农业科学, 2021, 49(10): 170-176. NI Y F, YE J, FAN J J. Fruit sorting system based on image recognition[J]. Jiangsu Agricultural Sciences, 2021, 49(10): 170-176.
[18] MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: A survey[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3 523-3 542.
[19] AKALIN F, YUMU瘙塁AK N. Detection and classification of white blood cells with an improved deep learning-based approach[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2022, 30(7): 2 725-2 739.
[20] HAMEED K, CHAI D, RASSAU A. Texture-based latent space disentanglement for enhancement of a training dataset for ANN-based classification of fruit and vegetables[J]. Information Processing in Agriculture, 2021, 10(1): 85-105.
[21] PADILLA R, PASSOS W L, DIAS T L B, et al. A comparative analysis of object detection metrics with a companion open-source toolkit[J]. Electronics, 2021, 10(3): 279.
[22] 杜国真, 卢明星, 季泽旭, 等. 基于改进CNN的苹果缺陷检测方法研究[J]. 食品与机械, 2023, 39(6): 155-160. DU G Z, LU M X, JI Z X, et al. Research on apple detection method based on improved CNN[J]. Food & Machinery, 2023, 39(6): 155-160.
[23] RANGWANI H, TAKENORI S, TAKASHI K, et al. Cost-sensitive self-training for optimizing non-decomposable metrics[J]. Advances in Neural Information Processing Systems, 2022, 35: 26 994-27 007.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.