Abstract
Objective: The objective of this study is to investigate the heavy metal content in sediment and various organs of Hunan lotus seed in a planting area, as well as to explore the characteristics of heavy metal accumulation and transfer in Hunan lotus seed. Methods: A typical planting area in Hunan Province was selected for this research. The contents of Cd, Cr, Pb, Ni, Cu, Zn and Mn were measured using an inductively coupled plasma emission spectrometer. The bioconcentration factor (BCF) and transfer factor (TF) were used to evaluate the heavy metal accumulation and transfer ability of Hunan lotus seed. Results: The average content of Cd, Cr, Pb, Ni, Cu, Zn, and Mn in the sediment were 0.73, 176.28, 40.48, 27.61, 28.07, 95.57 and 311.68 mg/kg, respectively. Compared with the limit values of NY/T 391—2021, the exceeding rates of Cd, Cr, and Pb content are 100%, 75%, and 10%, respectively. The highest concentrations and contents of these 7 heavy metals were Cd, Cu and Zn in the lotus core, Cr and Pb in the root, Ni in the lotus-seed kernel and Mn in the leaves, with an average content of 0.20, 13.64, 78.58, 14.66, 2.23, 1.11 and 924.03 mg/kg, respectively. The BCFMn values for both stems and leaves exceeded 1. The TFCu values for all organs were greater than 1. Conclusion: This study reveals that there is serious pollution from Cd within the study area. The content of heavy metals in different organs of Hunan lotus seed is different. Lotus stems and leaves has strong enrichment of Mn, and Cu had strong transfer ability in Hunan lotus seed.
Publication Date
4-30-2024
First Page
60
Last Page
67
DOI
10.13652/j.spjx.1003.5788.2023.81228
Recommended Citation
Hui, DAI; Wenyu, ZHAO; Jianhui, WANG; Xiangyi, HE; and Xiao, LONG
(2024)
"Detection and enrichment characteristics analysis of common heavy metal content in different organs of Hunan lotus seed,"
Food and Machinery: Vol. 40:
Iss.
3, Article 8.
DOI: 10.13652/j.spjx.1003.5788.2023.81228
Available at:
https://www.ifoodmm.cn/journal/vol40/iss3/8
References
[1] 中国科学院武汉植物研究所. 中国莲[M]. 北京: 科学出版社, 1987: 1-5.
Institute of Botany, the Chinese Academy of Sciences. Nelumbo nucifera[M]. Beijing: Science Press, 1987: 1-5.
[2] 于辉, 彭佳师, 严明理. 镉在莲各器官中累积规律的研究[J]. 生态科学, 2021, 40(1): 82-85.
YU H, PENG J S, YAN M L. Research on the accumulation of cadmium in lotus (Nelumbo nucifera Gaertn.) organs[J]. Ecological Science, 2021, 40(1): 82-85.
[3] 张思维, 李东梅, 刘小云, 等. 甘肃产黄芪重金属含量特征分析及健康风险评估[J]. 食品与机械, 2023, 39(5): 38-42.
ZHANG S W, LI D M, LIU X Y, et al. Analysis of heavy metal content and health risk assessment of Astragalus membranaceus in Gansu province[J]. Food & Machinery, 2023, 39(5): 38-42.
[4] 杨小俊, 次仁德吉, 吴雪莲, 等. 西藏4地市糌粑中重金属含量分析与污染评价[J]. 食品与生物技术学报, 2023, 42(5): 71-77.
YANG X J, Cirendeji, WU X L, et al. Analysis of heavy metals content and pollution evaluation in Tsamba in four cities of Tibet[J]. Journal of Food Science and Biotechnology, 2023, 42(5): 71-77.
[5] 王婧文, 姚欣, 李有志, 等. 东洞庭湖莲藕种植区土壤重金属污染及其对莲藕重金属含量的影响[J]. 生态科学, 2017, 36(4): 46-51.
WANG J W, YAO X, LI Y Z, et al. Heavy metal contamination in soils and their impact on heavy metal content in lotus in the East Dongting Lake[J]. Ecological Science, 2017, 36(4): 46-51.
[6] 刘玉玲. 莲藕中重金属含量的检测及健康风险评价[J]. 食品工程, 2022(3): 69-72.
LIU Y L. Detection and health risk assessment of heavy metals in Lotus root[J]. Food Engineering, 2022(3): 69-72.
[7] 聂梅梅, 景绘丽, 李大婧, 等. 江苏不同产地莲藕中重金属含量及健康风险评价[J]. 江苏农业科学, 2023, 51(17): 186-190.
NIE M M, JING H L, LI D J, et al. Determination and risk assessment of heavy metals in fresh lotus root from different producing areas of Jiangsu Province[J]. Jiangsu Agricultural Sciences, 2023, 51(17): 186-190.
[8] 鲁潇, 于坤, 孙庆业, 等. 铜陵矿区周边莲藕重金属元素含量及健康风险评价[J]. 农业环境科学学报, 2019, 38(9): 2 049-2 056.
LU X, YU K, SUN Q Y, et al. Heavy metal content and health risk assessment of lotus roots around the Tongling mining area, China[J]. Journal of Agro-Environment Science, 2019, 38(9): 2 049-2 056.
[9] 顾涛, 朱晓华, 赵信文, 等. 广州新垦莲藕产区莲藕品质与地球化学条件的关系[J]. 岩矿测试, 2021, 40(6): 833-845.
GU T, ZHU X H, ZHAO X W, et al. Relationship between lotus root quality and geochemical conditions in the Xinken lotus root producing area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845.
[10] 叶宏萌, 李国平, 袁旭音, 等. 武夷山五夫荷塘底泥重金属含量及在莲不同部位的富集效应[J]. 福建农业学报, 2018, 33(1): 73-80.
YE H M, LI G P, YUAN X Y, et al. Contents and enrichment coefficients of heavy metals in sediment and lotus grown in Pondsat Downtown Wuyishan City[J]. Fujian Journal of Agricultural Sciences, 2018, 33(1): 73-80.
[11] 廖丽萍, 肖爱平, 冷鹃, 等. 微波消解-ICP-MS法测定湘莲中的11种元素[J]. 食品工业, 2021, 42(5): 437-440.
LIAO L P, XIAO A P, LENG J, et al. Determination of 11 elements in Hunan lotus seed by ICP-MS with microwave digestion[J]. The Food Industry, 2021, 42(5): 437-440.
[12] 姜涛, 施枝江, 陈林明, 等. ICP-MS法测定不同产地莲子及莲子不同部位中5种重金属元素含量[J]. 亚太传统医药, 2018, 14(10): 55-58.
JIANG T, SHI Z J, CHEN L M, et al. Determination of 5 heavy metal elements in lotus seed of different cultivations and parts by ICP-MS[J]. Asia-Pacific Traditional Medicine, 2018, 14(10): 55-58.
[13] 于辉, 严明理. 湘潭莲子种植区土壤和莲子重金属污染的生态风险评价[J]. 生态科学, 2023, 42(3): 184-189.
YU H, YAN M L. Ecological risk assessment of heavy metal in soil and lotus seeds in Xiangtan Lotus planting[J]. Ecological Science, 2023, 42(3): 184-189.
[14] 潘佑名, 杨国治. 湖南土壤背景值及研究方法[M]. 北京: 中国环境科学出版社, 1988: 176-239.
FAN Y M, YANG G Z. Background values and research methods of soils in Hunan Province[M]. Beijing: China Environmental Science Press, 1988: 176-239.
[15] 李俊生, 郭小瑞, 綦峥. 谷物中重金属来源、检测技术及膳食风险研究进展[J]. 食品安全质量检测学报, 2023, 14(23): 141-147.
LI J S, GUO X R, QI Z. Advances in heavy metal sources, detection techniques and dietary risks in cereals[J]. Journal of Food Safety & Quality, 2023, 14(23): 141-147.
[16] 袁建民, 何璐, 杨晓琼, 等. 微波消解ICP-OES法同时测定香茅草中11种微量元素[J]. 中国农学通报, 2020, 36(14): 69-73.
YUAN J M, HE L, YANG X Q, et al. Simultaneous determination of 11 trace elements in Cymbopogon citratus by ICP-OES with microwave digestion[J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 69-73.
[17] 丁可武, 代莉莉, 黄迪惠, 等. 基于Bi-Co-BTC电化学传感器检测食品中Zn2+ Cd2+ Pb2+含量[J]. 食品与机械, 2023, 39(9): 50-56.
DING K W, DAI L L, HUANG D H, et al. Determination of Zn2+ Cd2+ Pb2+ in food base on Bi-Co-BTC electrochemical sensor[J]. Food & Machinery, 2023, 39(9): 50-56.
[18] 曾瑜, 谌委菊, 全珂, 等. 基于脱氧核酶的食品安全快速检测方法研究进展[J]. 食品与机械, 2022, 38(6): 205-212.
ZENG Y, CHEN W J, QUAN K, et al. Progress in food safety rapid analysis based on deoxyribozyme[J]. Food & Machinery, 2022, 38(6): 205-212.
[19] XIONG C, ZHNAG Y, XU X, et al. Lotus roots accumulate heavy metals independently from soil in main production regions of China[J]. Scientia Horticulturae, 2013, 164: 295-302.
[20] LI F R, WANG X, WANG F H, et al. A risk-based approach for the safety analysis of eight trace elements in Chinese flowering cabbage (Brassica parachinensis L.) in China[J]. Journal of the Science of Food and Agriculture, 2021, 101(13): 5 583-5 590.
[21] 骆子璇, 胡海波, 贾西川, 等. 湿地池杉不同营养器官富集重金属特征[J]. 福建农林大学学报(自然科学版), 2022, 51(6): 767-773.
LUO Z X, HU HB, JIA X C, et al. Enrichment characteristics of heavy metals in different vegetative organs of Taxodium ascendens wetland forests[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition) , 2022, 51(6): 767-773.
[22] 农业农村部. 绿色食品产地环境质量: NY/T 391—2021[S]. 北京: 中国标准出版社, 2021: 7.
Ministry of Agriculture and Rural Affairs of PRC. Green food: Environmental quality for production area: NY/T 391—2021[S]. Beijing: China Standards Press, 2021: 7.
[23] 屈明华, 陈雄弟, 倪张林, 等. 浙江油茶产地土壤和果实金属元素含量特征[J]. 热带亚热带植物学报, 2021, 29(3): 259-268.
QU M H, CHEN X D, NI Z L, et al. Characteristics and distributions of metal elements in camellia oleifera fruits and soil in production areas of Zhejiang Province[J]. Journal of Tropical and Subtropical Botany, 2021, 29(3): 259-268.
[24] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2 822-2 833.
CHEN W X, LI Q, WANG Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 41(6): 2 822-2 833.
[25] 杨帆, 袁隆湖, 黎一夫, 等. 湖南省主要水系底泥重金属污染特征及其生态风险评价[J]. 生态学报, 2022, 42(5): 1 934-1 946.
YANG F, YUAN L H, LI Y F, et al. Pollution characteristics and ecological risk assessment of heavy metals in sediments of main water systems in Hunan Province[J]. Acta Ecologica Sinica, 2022, 42(5): 1 934-1 946.
[26] 赵升, 欧阳凯, 罗绪强, 等. 贵阳市高雁垃圾填埋场周边土壤和农作物重金属污染特征及健康风险评价[J]. 山东农业科学, 2023, 55(2): 92-99.
ZHAO S, OUYANG K, LUO X Q, et al. Characteristics and health risk assessment of heavy metal pollution in soil and crops near Gaoyan landfill in Guiyang City[J]. Shandong Agricultural Sciences, 2023, 55(2): 92-99.
[27] 沈珺珺, 林亲录, 罗非君. 防治大米镉污染的生物及农作技术研究进展[J]. 食品与机械, 2018, 34(12): 172-175.
CHEN J J, LIN Q L, LUO F J. Advacnes on biological and farming technology for the prevention and treatment of cadmium in rice[J]. Food & Machinery, 2018, 34(12): 172-175.
[28] 冯凯璇, 杨亚春, 李江遐, 等. 不同类型水稻对镉(Cd)吸收、转运与富集的差异分析[J]. 四川环境, 2023, 42(3): 350-356.
PENG K X, YANG Y C, LI J X, et al. Differential analysis of Cd uptake, transport and enrichment inindica and japonica rice[J]. Sichuan Environment, 2023, 42(3): 350-356.
[29] 李相楹, 何腾兵, 付天岭, 等. 重金属元素在土壤—蔬菜系统中的转移富集及其毒性机理研究进展[J]. 应用化工, 2021, 50(7): 1 932-1 937.
LI X Y, HE T B, FU T L, et al. Review of migration, bioaccumulation and toxicity of heavy metals in soil-vegetables system[J]. Applied Chemical Industry, 2021, 50(7): 1 932-1 937.
[30] 王晶云, 李娟. 杂优水稻对土壤中铅和镉的吸收与分配[J]. 食品与机械, 2016, 32(3): 49-52.
WANG J Y, LI J. Uptake and distribution of Pb and Cd by hybrid rice in soils[J]. Food & Machinery, 2016, 32(3): 49-52.
[31] 翁俊, 徐春和. 光合作用氧释放机理研究进展[J]. 植物生理与分子生物学学报, 2003(2): 83-91.
WENG J, XU C H. Progressive investigation on the molecular mechanism of photosynthetic oxygen evolution[J]. Physiology and Molecular Biology of Plants, 2003(2): 83-91.
[32] 胡子逸, 黄红荣, 陈新平, 等. 大白菜不同层次营养价值和健康风险评价[J]. 食品科学, 2022, 43(3): 114-120.
HU Z Y, HUANG H R, CHEN X P, et al. Nutritional value and health risk assessment of different layers of Chinese cabbage[J]. Food Science, 2022, 43(3): 114-120.
[33] 高婉莹, 王冬艳, 王兴佳, 等. 长春市黑土城乡交错区重金属地球化学特征及生态风险评价[J]. 世界地质, 2023, 42(4): 749-760.
GAO W Y, WANG D Y, WANG X J, et al. Geochemical characteristics of heavy metals in black soilperi-urban area and its evaluation of ecological risk[J]. World Geology, 2023, 42(4): 749-760.
[34] 王鹏, 赵志忠, 马荣林, 等. 海南岛北部潮间带红树林对重金属的累积特征[J]. 生态环境学报, 2014, 23(5): 842-846.
WANG P, ZHAO Z Z, MA R L, et al. Bioaccumulation characteristics of heavy metal in intertidal zone sediments from northern Hainan Island[J]. Ecology and Environmental Sciences, 2014, 23(5): 842-846.
[35] WANG L, ZHANG Q Y, LIAO X Y, et al. Phytoexclusion of heavy metals using low heavy metal accumulating cultivars: A green technology[J]. Journal of Hazardous Materials, 2021, 413: 125427.
[36] 杜宪正, 王涛, 邹路易, 等. 一株锌抗性菌株强化印度芥菜修复锌污染土壤的可行性研究[J]. 食品与生物技术学报, 2019, 38(10): 52-59.
DU X Z, WANG T, ZOU L Y, et al. Feasibility of enhanced phytoextraction of Zn for contaminated soil with a zinc-resistant strain[J]. Journal of Food Science and Biotechnology, 2019, 38(10): 52-59.
[37] MAO C, SONG Y, CHEN L, et al. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice[J]. Catena, 2019, 175: 339-348.
[38] 何伟忠, 闫巧俐, 郑力, 等. 新疆红枣镍含量差异分析及来源[J]. 食品与机械, 2019, 35(5): 111-115.
HE W Z, YAN Q L, ZHENG L, et al. The analyses of nickel pollution in different source of jujube in Xinjiang[J]. Food & Machinery, 2019, 35(5): 111-115.
[39] 翁城武, 黄伙水, 许彩霞. 蔬菜中11种重金属积累效应研究[J]. 食品研究与开发, 2018, 39(13): 194-200.
WENG C W, HUANG H S, XU C X. Study on the accumulation of 11 heavy metals in vegetables[J]. Food Research and Development, 2018, 39(13): 194-200.
[40] MA J F, SHEN R F, SHAO J F. Transport of cadmium from soil to grain in cereal crops: A review[J]. Pedosphere, 2021, 31(1): 3-10.
[41] 杨梦昕, 杨东璇, 李萌立, 等. 湘江长沙段沿岸常见农作物重金属污染研究: Zn、Cu、Pb和Cd的富集规律及污染评价[J]. 中南林业科技大学学报, 2015, 35(1): 126-131.
YANG M X, YANG D X, LI M L, et al. Studies of heavy metal pollution in 10 crops planted by Changsha section of Xiangjiang River: Enrichment and pollution evaluation of Zn, Cu, Pb and Cd[J]. Journal of Central South University of Forestry & Technology, 2015, 35(1): 126-131.
[42] 程俊伟, 蔡深文, 黄明琴, 等. 贵州遵义锰矿区植物根际土壤中重金属形态迁移转化及风险评价[J]. 环境化学, 2022, 41(9): 2 833-2 841.
CHENG J W, CAI S W, HUANG M Q, et al. Heavy metal speciation migrationtransformation and risk assessment in plant rhizosphere soil of Zunyi manganese mineland, Guizhou[J]. Environmental Chemistry, 2022, 41(9): 2 833-2 841.
[43] 田稳, 汪洁, 岳志强, 等. 西南典型种植区蔬菜重金属健康风险评估[J]. 中国食品学报, 2023, 23(2): 319-329.
TIAN W, WANG J, YUE Z Q, et al. Health risk assessment of heavy metals in vegetables from typical planting areas in Southwest of China[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(2): 319-329.
[44] 罗松英, 李秋霞, 邱锦坤, 等. 南三岛土壤—红树植物系统中重金属形态特征及转移转化规律[J]. 生态环境学报, 2022, 31(7): 1 409-1 416.
LUO S Y, LI Q X, QIU J K, et al. Speciation characteristics, migration and transformation of heavy metals in Mangrove soil-plant system in Nansan Island[J]. Ecology and Environmental Sciences, 2022, 31(7): 1 409-1 416.
[45] 双燕, 杨振鸿, 胡峰. 三峡库区地质高背景区土壤—油菜重金属转移特征[J]. 三峡生态环境监测, 2023, 8(4): 56-65.
SHUANG Y, YANG Z H, HU F. Migration characteristics of heavy metal elements between soil and rapeinthe high geological background area of three gorges reservoir region, China[J]. Ecology and Environmental Monitoring of Three Gorges, 2023, 8(4): 56-65.
[46] 朱臻, 杨相东, 徐章倩, 等. 农作物叶片对大气沉降重金属的吸收转运和积累机制[J]. 植物营养与肥料学报, 2021, 27(2): 332-345.
ZHU Z, YANG X D, XU Z Q, et al. Foliar uptake, translocation and accumulation of heavy metals from atmospheric deposition in crops[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 332-345.
[47] HE B, WANG W, GENG R, et al. Exploring the fate of heavy metals from mining and smelting activities in soil-crop system in Baiyin, NW China[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111234.
[48] ZHENG S, WANG Q, YUAN Y, et al. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China[J]. Food Chemistry, 2020, 316: 126213.