Abstract
Objective: To solve the problems of low control accuracy and poor motion stability in the trajectory tracking control method of parallel food sorting robots. Methods: On the basis of analyzing the structure of a four degree of freedom parallel robot, a combination of sliding mode control algorithm, fuzzy control algorithm, and improved bat algorithm was proposed for trajectory tracking control of a parallel food sorting robot. Optimizing the bandwidth of fuzzy algorithms by improving the bat algorithm, and adaptively adjusting the fuzzy gain and sliding surface slope of the sliding membrane control algorithm through the optimized fuzzy control algorithm, the tracking error of the controller was reduced, improve anti-interference ability, and verify the superiority of the proposed trajectory tracking control method. Results: The proposed trajectory tracking control method had an actual sorting accuracy of 99.90% and an average sorting time of 0.509 seconds. Conclusion: Compared with conventional methods, the proposed trajectory tracking control method has higher joint trajectory tracking accuracy, stronger anti-interference ability, and smoother output torque.
Publication Date
5-21-2024
First Page
72
Last Page
77
DOI
10.13652/j.spjx.1003.5788.2023.60178
Recommended Citation
Yunfeng, LI; Cong, WANG; and Yuqin, LI
(2024)
"Multi algorithm fusion based trajectory tracking control method for parallel food sorting robots,"
Food and Machinery: Vol. 40:
Iss.
4, Article 12.
DOI: 10.13652/j.spjx.1003.5788.2023.60178
Available at:
https://www.ifoodmm.cn/journal/vol40/iss4/12
References
[1] JIANG L, WANG S, XIE Y, et al. Decoupled fractional supertwisting stabilization of interconnected mobile robot under harsh terrain conditions[J]. IEEE Transactionson in Dustrial Electronics, 2022, 69(8): 8 178-8 189.
[2] 胡国喜, 王超, 刘宇珩. 基于改进光滑滑模阻抗控制的水果分拣机械人夹持机构控制方法[J]. 食品与机械, 2021, 37(2): 123-126.
HU G X, WANG C, LIU Y H. Control method of fruit sorting robot clamping mechanism based on improved smooth sliding mode impedance control[J]. Food & Machinery, 2021, 37(2): 123-126.
[3] YAO M, XIAO X, TIAN Y, et al. A fast terminal sliding mode control scheme with time-varying sliding modesur-faces[J]. Journal of the Franklin Institute, 2021, 358(10): 5 386-5 407.
[4] 解则晓, 李斌, 任凭. 基于能量指标的Delta并联机器人拾放轨迹参数优化及验证[J]. 计算机集成计算系统, 2018, 24(12): 3 073-3 081.
XIE Z S, LI B, REN P. Optimization and verification of delta parallel robot pickup and release trajectory parameters based on energy index[J]. Computer Integrated Computing System, 2018, 24(12): 3 073-3 081.
[5] 章鸿. Delta快速分拣机器人轨迹优化算法研究[J]. 机械设计与制造, 2021, 12(6): 288-295.
ZHANG H. Research on trajectory optimization algorithm of delta rapid sorting robot[J]. Mechanical Design and Manufacturing, 2021, 12(6): 288-295.
[6] 严智敏, 徐顺建, 简辉华. 3-RPS并联机器人动力学分析及模糊控制仿真[J]. 中北大学学报(自然科学版), 2019, 40(6): 537-541, 567.
YAN Z M, XU S J, JIAN H H. Dynamics analysis and fuzzy control simulation of 3-RPS parallel robots[J]. Journal of North Central University (Natural Science Edition), 2019, 40(6): 537-541, 567.
[7] 杨桃月, 陈国雄, 曹阳, 等. 基于PSO优化模糊PID的3-PRS并联机器人控制仿真分析[J]. 装备制造技术, 2022, 12(8): 12-16.
YANG T Y, CHEN G X, CAO Y, et al. Simulation analysis of 3-PRS parallel robot control based on PSO optimized fuzzy PID[J]. Equipment Manufacturing Technology, 2022, 12(8): 12-16.
[8] 张铁, 曹亚超, 邹焱飚, 等. 具有线性位置解的3-CRU并联机器人轨迹跟踪[J]. 华中科技大学学报(自然科学版), 2023, 51(6): 16-22.
ZHANG T, CAO Y C, ZOU Y B, et al. Trajectory tracking of 3-CRU parallel robots with linear position solutions[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(6): 16-22.
[9] 董慧芬, 王渗, 宋金海. Delta并联清洗机构轨迹跟踪控制方法研究[J]. 计算机仿真, 2021, 38(11): 27-32.
DONG H F, WANG S, SONG J H. Research on trajectory tracking control method for Delta parallel cleaning mechanism[J]. Computer Simulation, 2021, 38(11): 27-32.
[10] 刘现伟, 颉潭成, 徐彦伟, 等. 基于合成运动的Delta机器人轨迹规划[J]. 制造业自动化, 2021, 43(7): 19-23, 47.
LIU X W, JIE T C, XU Y W, et al. Delta robot trajectory planning based on synthetic motion[J]. Manufacturing Automation, 2021, 43(7): 19-23, 47.
[11] LI W, XIONG R. A hybrid visual servo control method for simultaneously controlling anonholonomic mobile and a manipulator[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(2): 141-154.
[12] 徐岩. 基于改进引力搜索算法的高速并联机器人轨迹优化[J]. 食品与机械, 2022, 38(5): 82-86.
XU Y. Trajectory optimization of high-speed parallel robots based on improved gravity search algorithm[J]. Food & Machinery, 2022, 38(5): 82-86.
[13] 姚学峰, 李超. 基于改进NURBS曲线插补算法的食品分拣机器人轨迹规划[J]. 食品与机械, 2022, 38(3): 80-85.
YAO X F, LI C. Trajectory planning of food sorting robots based on improved NURBS curve interpolation algorithm[J]. Food & Machinery, 2022, 38 (3): 80-85.
[14] 朱大昌, 盘意华, 杜宝林, 等. 一种并联机器人轨迹规划算法研究[J]. 机床与液压, 2023, 51(5): 14-22.
ZHU D C, PAN Y H, DU B L, et al. Research on a trajectory planning algorithm for parallel robots[J]. Machine Tool and Hydraulic, 2023, 51(5): 14-22.
[15] 张灵枝, 黄艳, 于英杰, 等. 基于近红外光谱技术的六大茶类快速识别[J]. 食品与生物技术学报, 2024, 43(1): 48-59.
ZHANG L Z, HUANG Y, YU Y J, et al. Rapid identification of six major tea categories based on near-infrared spectroscopy technology[J]. Journal of Food Science and Biotechnology, 2024, 43(1): 48-59.
[16] 张皓宇, 刘晓伟, 任川, 等. 并联机器人正运动学与NURBS轨迹规划[J]. 机械设计与制造, 2021, 12(4): 282-292.
ZHANG H Y, LIU X W, REN C, et al. Forward kinematics and NURBS trajectory planning of parallel robot[J]. Mechanical Design and Manufacturing, 2021, 12(4): 282-292.
[17] 张鑫, 秦东晨, 谢远龙, 等. 基于双环自适应滑模的移动机器人轨迹跟踪控制[J]. 合肥工业大学学报(自然科学版), 2024, 47(1): 13-20.
ZHANG X, QIN D C, XIE Y L, et al. Mobile robot trajectory tracking control based on dual loop adaptive sliding mode[J]. Journal of Hefei University of Technology (Natural Science Edition), 2024, 47(1): 13-20.
[18] AZUMAYA C M, DAYS E L, VINSON P N, et al. Screening for AMPA receptor auxiliary subunit specific modulators[J]. PLoS One, 2017, 12(3): 1 523-1 538.
[19] 朱光耀. 基于无标定视觉伺服的全向移动机械臂跟踪控制[J]. 电子测量技术, 2020, 43(23): 23-29.
ZHU G Y. Tracking control of omnidirectional mobile manipulator based on uncalibrated visual servo[J]. Electronic Measurement Technology, 2020, 43(23): 23-29.
[20] 王曦, 王宗彦, 张宇廷, 等. 基于NSGA-Ⅱ算法的并联机器人多目标轨迹规划[J]. 机械设计与制造工程, 2022, 51(12): 72-77.
WANG X, WANG Z Y, ZHANG Y T, et al. Multi objective trajectory planning for parallel robots based on NSGA - II algorithm[J]. Mechanical Design and Manufacturing Engineering, 2022, 51(12): 72-77.
[21] 任鹏飞, 耿世勇. 3-RRR平面并联机器人神经网络滑模控制研究[J]. 机床与液压, 2018, 46(15): 16-19.
REN P F, GENG S Y. Research on neural network sliding mode control of 3-RRR planar parallel robots[J]. Machine Tool & Hydraulic, 2018, 46(15): 16-19.