Abstract
Objective: This study aimed to investigate the nutrient composition and the optimal enzymatic conditions for the peptides of Aspongopus and lay the groundwork for the creation of Aspongopus protein resources. Methods: The fat, protein, crude polysaccharide content, and fatty acid composition were determined according to the national standard method, and the total flavonoid and polyphenol content was determined by the standard curve method. Response surface methodology was used to optimize the enzymatic process conditions of Aspongopus based on the peptide yield; Amino acid analyzer and high-performance gel permeation chromatography was used to determine the amino acid composition and the relative molecular mass distribution of Aspongopus digest; The scavenging ability of Aspongopus digest of DPPH radicals and ABTS+ radicals as well as the total reducing ability were investigated. Results: Aspongopus crude fat content was 43.40%, and protein content was 37.08%; The contents of total sugar, total flavonoids and total phenols were 7.64%, 1.67%, 1.90% respectively; The optimum enzymatic digestion process of Aspongopus was stewing for 5 h and then digesting for was 6 h at pH 10 and 55 ℃, and the peptide yield was 35.74% under these conditions. The ratio of essential amino acids to non-essential amino acids of Aspongopus digest was 70.46%, the percentage of Aspongopus digest relative molecular mass <1 000 was 88.1%; The ABTS+ clearance rate was 88.44% at the concentration of 1.0 mg/mL of the enzymatic digest of Aspongopus. Conclusion: Under the control of the optimal procession conditions, the peptide yield of Aspongopus was 35.74%, with high nutritional value and good antioxidant activity.
Publication Date
5-21-2024
First Page
158
Last Page
164
DOI
10.13652/j.spjx.1003.5788.2023.80507
Recommended Citation
Jiaxu, LI; Yang, YANG; Biying, WANG; Pan, LI; and Bing, DU
(2024)
"Nutritional evaluation and enzymatic hydrolysis peptide preparation process optimization of Aspongopus,"
Food and Machinery: Vol. 40:
Iss.
4, Article 23.
DOI: 10.13652/j.spjx.1003.5788.2023.80507
Available at:
https://www.ifoodmm.cn/journal/vol40/iss4/23
References
[1] 国家药典委员会. 中华人民共和国药典: 3部[S]. 北京: 中国医药科技出版社, 2015: 11.
National Pharmacopoeia Committee. Pharmacopoeia of the people's republic of China: 3 parts[S]. Beijing: China Medical Science and Technology Press, 2015: 11.
[2] 付惠惠, 张莉, 王凤月, 等. 九香虫对染锰大鼠睾丸组织损伤的修复机制[J]. 中成药, 2017, 39(5): 1 071-1 074.
FU H H, ZHANG L, WANG F Y, et al. Repair mechanism of testicular tissue damage in manganese-infected rats by Aspongopus[J]. Chinese Traditional Patent Medicine, 2017, 39(5): 1 071-1 074.
[3] 何志全, 张莉, 凌蕾, 等. 九香虫对染锰雄性大鼠生殖损伤的保护[J]. 中成药, 2016, 38(2): 258-261.
HE Z Q, ZHANG L, LING L, et al. Protection of stink bug on manganese-induced reproductive damage to male rats[J]. Chinese Traditional Patent Medicine, 2016, 38(2): 258-261.
[4] SHI Y, TU Z, WANG X, et al. Bioactive compounds from the insect Aspongopus chinensis[J]. Bioorganic & Medicinal Chemistry Letters, 2014, 24(22): 5 164-5 169.
[5] ZHAO S, TAN J, YU H, et al. In vivo and in vitro antiproliferative and antimetastatic effects of hemolymph of Aspongopus chinensis Dallas on breast cancer cells[J]. Journal of Traditional Chinese Medicine, 2021, 41(4): 523-529.
[6] TAN J, TIAN Y, CAI R, et al. Chemical composition and antiproliferative effects of a methanol extract of Aspongopus chinensis Dallas[J]. Evid Based Complement Alternat Med, 2019, 2 019: 2607086.
[7] 李尚伟, 赵柏松, 杜娟. 九香虫抗菌肽CcAMP1的分离纯化和抗菌活性检测[J]. 昆虫学报, 2015, 58(6): 610-616.
LI S W, ZHAO B S, DU J. Isolation, purification, and detection of the antimicrobial activity of the antimicrobial peptide CcAMP1 from coridius chinensis (Hemiptera: Dinidoridae) [J]. Acta Entomologica Sinica, 2015, 58(6): 610-616.
[8] 王凤月, 刘川燕, 王涌, 等. 九香虫对慢性锰暴露大鼠肝脏损伤的保护作用[J]. 中成药, 2019, 41(12): 3 022-3 025.
WANG F Y, LIU C Y, WANG Y, et al. Protective effect of Aspongopus on liver injury in rats exposed to chronic manganese[J]. Chinese Traditional Patent Medicine, 2019, 41(12): 3 022-3 025.
[9] 高颖晖, 周万红, 窦鹏, 等. 九香虫醇提物对运动大鼠骨骼肌抗氧化酶活性及其基因表达水平的影响[J]. 生物技术通报, 2015, 31(12): 146-149.
GAO Y H, ZHOU W H, DOU P, et al. The effects of ethanol extract from Aspongopus chinensis on the activities of antioxidant enzymes in skeletal muscle of exercised rats and their gene expression levels[J]. Biotechnology Bulletin, 2015, 31(12): 146-149.
[10] 李娟, 张一唱, 崔光红, 等. 九香虫提取物的抗疲劳和补肾壮阳活性评价[J]. 中南民族大学学报(自然科学版), 2018, 37(2): 45-48.
LI J, ZHANG Y C, CUI G H, et al. Evaluation of anti-fatigue and aphrodisiac activity of extract from Aspongopus chinensis[J]. Journal of South-central Minzu University (Natural Science Edition), 2018, 37(2): 45-48.
[11] 王涌. 九香虫水提液对锰暴露大鼠睾丸间质细胞及睾酮合成的影响和机制[D]. 遵义: 遵义医科大学, 2019: 26-35.
WANG Y. Effects and mechanisms of aqueous extract of Aspongopus chinensis on testicular mesenchymal cells and testosterone synthesis in manganese-exposed rats[D]. Zunyi: Zunyi Medical University, 2019: 26-35.
[12] 于姮梅, 赵帅, 蔡仁莲, 等. 九香虫油脂提取条件优化及体外抗乳腺癌活性研究[J]. 中国油脂, 2022, 47(2): 34-38.
YU H M, ZHAO S, CAI R L, et al. Optimization of extraction conditions of Aspongopus chinensis Dallas oil and its anti-breast cancer activity in vitro[J]. China Oils and Fats, 2022, 47(2): 34-38.
[13] 刘伦沛. 超声波辅助提取九香虫黄酮化合物的工艺研究[J]. 食品工业, 2012, 33(5): 43-47.
LIU L P. Ultrasound-assisted extraction Aspongopus chinensis Dallas flavonoids process[J]. The Food Industry, 2012, 33(5): 43-47.
[14] 张慧莹, 杨为乔, 陈瑶, 等. 鸡内金酶解物制备工艺优化及抗氧化活性研究[J]. 食品与机械, 2022, 38(4): 169-174.
ZHANG H Y, YANG W Q, CHEN Y, et al. Optimization of preparation technology and antioxidant activity of enzymatic hydrolysates from corneum gigerii galli endothelium[J]. Food & Machinery, 2022, 38(4): 169-174.
[15] 李俐, 李晓飞. 贵州九香虫营养成分分析[J]. 昆虫知识, 2010, 47(4): 748-751.
LI L, LI X F. Analysis of nutritional components of Aspongopus chinensis in Guizhou[J]. Chinese Journal of Applied Entomology, 2010, 47(4): 748-751.
[16] 李莎, 宋淑敏, 晏仁义, 等. 九香虫及相似品的多糖组成分析[J]. 中国现代中药, 2019, 21(9): 1 273-1 278.
LI S, SONG S M, YAN R Y, et al. Analysis of polysaccharide composition of Aspongopus chinensis and its adulterants[J]. Modern Chinese Medicine, 2019, 21(9): 1 273-1 278.
[17] 冯倩, 曾里, 冉旭, 等. 低分子量鲶鱼蛋白肽的酶解工艺优化及氨基酸分析[J]. 中国调味品, 2020, 45(1): 84-89.
FENG Q, ZENG L, RAN X, et al. Optimization of enzymatic hydrolysis process and amino acid analysis of catfish peotein peptide with low molecular weight[J]. China Condiment, 2020, 45(1): 84-89.
[18] 朱翰林, 刘茜, 郑思瑶, 等. 牡蛎多肽的酶解工艺及抗氧化活性与相对分子质量分布研究[J]. 食品科技, 2020, 45(6):142-149.
ZHU H L, LIU X, ZHENG S Y, et al. Enzymatic hydrolysis, antioxidant activity and relative molecular mass distribution of oyster peptides[J]. Food Science and Technology, 2020, 45(6): 142-149.
[19] 徐仰丽, 叶剑, 余海, 等. 南方刺参性腺多肽酶解工艺优化及抗氧化活性分析[J]. 食品工业科技, 2018, 39(19): 181-187.
XU Y L, YE J, YU H, et al. Optimization of the enzymatic hydrolysis process and analysis of the antioxidant activity of polypeptide from apostichopus japonicus gonads[J]. Science and Technology of Food Industry, 2018, 39(19): 181-187.
[20] 龙悦, 黄先智, 丁晓雯, 等. 木薯蚕蛹氨基酸构成分析[J]. 食品科学, 2013, 34(4): 161-164.
LONG Y, HUANG X Z, DING X W, et al. Analysis of amino acid composition of eri silkworm (Samia cynthia ricini) pupa[J]. Food Science, 2013, 34(4): 161-164.
[21] 朱圣陶, 吴坤. 蛋白质营养价值评价: 氨基酸比值系数法[J]. 营养学报, 1988(2): 187-190.
ZHU S T, WU K. Protein nutritional value evaluation: Amino acid ratio coefficient method[J]. Acta Nutrimenta Sinica, 1988(2): 187-190.
[22] 王瑶, 辛二娜, 李玉婷, 等. 黄粉虫多肽的组成及体外抗氧化活性[J]. 食品科技, 2022, 47(3): 252-258.
WANG Y, XIN E N, LI Y T, et al. Composition and in-vitro antioxidant activity of polypeptide from tenebrio molitor[J]. Food Science and Technology, 2022, 47(3): 252-258.
[23] 刘欢, 戚怡, 唐晓宁, 等. 方格星虫多肽的结构分析及体外抗氧化活性[J]. 中国海洋药物, 2022, 41(5): 49-56.
LIU H, QI Y, TANG X N, et al. Antioxidant activity and structural identification of enzymatic hydrolysis peptides from Sipunculus nudus L[J]. Chinese Journal of Marine Drugs, 2022, 41(5): 49-56.