•  
  •  
 

Corresponding Author(s)

王建辉(1980—),男,长沙理工大学教授,博士。E-mail:wangjh0909@163.com

Abstract

As one of the most widely used plasticizers, BPA is often used in various types of food packaging. However, the leaching of BPA from food and water and the emission of BPA in the manufacturing process can harm human health. In recent years, carbon-based composites have shown excellent performance in the detection of BPA due to their unique physical and chemical properties. The rapid detection of BPA by electrochemical sensors based on carbon-based composites has become a research hotspot. This article provides an overview of BPA and the application of carbon-based materials modified electrochemical sensors in the detection of BPA, as well as prospects for the development direction of electrochemical detection of BPA.

Publication Date

5-21-2024

First Page

210

Last Page

219

DOI

10.13652/j.spjx.1003.5788.2024.80268

References

[1] RAJENDRAN J, KANNANT S, DHANASEKARANL S, et al. Preparation of 2D graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products[J]. Chemosphere, 2021, 287: 132106.
[2] ZHAN X H, HU S Y, WANG J Q, et al. One-pot electrodeposition of metal organic frameworks composite accelerated by gold nanoparticles and electroreduced carbon dots for electroanalysis of bisphenol A in real plastic samples[J]. Sensors and Actuators B: Chemical, 2021, 346: 130499.
[3] 姜侃, 张慧, 曹慧, 等. 盐析辅助液液萃取-HPLC-MS/MS法检测液态乳中13种双酚类和烷基酚类物质[J]. 食品与机械, 2022, 38(12): 32-36, 225. JIANG K, ZHANG H, CAO H, et al. Salting-out assisted liquid-liquid extraction coupled with HPLC-MS/MS for determination of 13 kinds of bisphenols and alkyl phenol compounds in liquid dairy products[J]. Food & Machinery, 2022, 38(12): 32-36, 225.
[4] 唐吉旺, 袁列江, 肖泳, 等. 高效液相色谱—串联质谱法测定食品塑料包装材料中双酚A和壬基酚[J]. 食品与机械, 2023, 39(1): 37-41. TANG J W, YUAN L J, XIAO Y, et al. Determination of bisphenol A and nonylphenol in food packaging material by high performance liquid chromatography-tandem mass spectrometry[J]. Food & Machinery, 2023, 39(1): 37-41.
[5] XU X Q, LIU A M, HU S Y, et al. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action[J]. Food Chemistry, 2021, 353: 129488.
[6] MARLINDA A, AN'AMT M N, YUSOFF N, et al. Recent progress in nitrates and nitrites sensor with graphene-based nanocomposites as electrocatalysts[J]. Trends in Environmental Analytical Chemistry, 2022, 34: e00162.
[7] 韩爽, 丁雨欣, 冷秋雪, 等. 分子印迹电化学传感器在食品检测中的研究进展[J]. 食品与机械, 2021, 37(2): 205-210. HAN S, DING Y X, LENG Q X, et al. Research progress of molecularly imprinted electrochemical sensor in food detection[J]. Food & Machinery, 2021, 37(2): 205-210.
[8] 丁同英, 袁航. 分子印迹传感器在真菌毒素检测中的应用研究进展[J]. 食品与机械, 2021, 37(12): 197-201. DING T Y, YUAN H. Research progress of molecular imprinting sensor in mycotoxin detection[J]. Food & Machinery, 2021, 37(12): 197-201.
[9] FU S S, ZHU Y, ZHANG Y, et al. Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection[J]. Microchemical Journal, 2021, 171: 106776.
[10] PAN M F, YIN Z J, LIU K X, et al. Carbon-based nanomaterials in sensors for food safety[J]. Nanomaterials, 2019, 9(9): 1 330.
[11] MORADI O. Electrochemical sensors based on carbon nanostructures for the analysis of bisphenol A: A review[J]. Food and Chemical Toxicology, 2022, 165: 113074.
[12] KIM Y R, BONG S B, KANG Y J, et al. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes[J]. Biosensors and Bioelectronics, 2010, 25(10): 2 366-2 369.
[13] VERMA D, YADAV A K, MUKHERJEE M D, et al. Fabrication of a sensitive electrochemical sensor platform using reduced graphene oxide-molybdenum trioxide nanocomposite for BPA detection: An endocrine disruptor[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105504.
[14] 程欣蕾, 杨武英, 杜娟. 高表面增强拉曼散射活性rGO-AuNPs的合成及其在氧氟沙星检测中的应用[J]. 食品与机械, 2023, 39(8): 48-54. CHENG X L, YANG W Y, DU J. Synthesis of reduced graphene oxide-gold composite nanomaterials with high SERS activity and application of ofloxacin detection[J]. Food & Machinery, 2023, 39(8): 48-54.
[15] GHANBARI S, AHOUR F, KESHIPOUR S. An optical and electrochemical sensor based on l-arginine functionalized reduced graphene oxide[J]. Scientific Reports, 2022, 12(1): 19398.
[16] WANG Y, LIANG Y, ZHANG S, et al. Enhanced electrochemical sensor based on gold nanoparticles and MoS2 nanoflowers decorated ionic liquid-functionalized graphene for sensitive detection of bisphenol A in environmental water[J]. Microchemical Journal, 2021, 161: 105769.
[17] HE S G, MA Y, ZHOU J Y, et al. A direct "touch" approach for gold nanoflowers decoration on graphene/ionic liquid composite modified electrode with good properties for sensing bisphenol A[J]. Talanta, 2019, 191: 400-408.
[18] JIAO S F, JIN J, WANG L. Tannic acid functionalized N-doped graphene modified glassy carbon electrode for the determination of bisphenol A in food package[J]. Talanta, 2014, 122: 140-144.
[19] WU L D, DENG D H, JIN J, et al. Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A[J]. Biosensors and Bioelectronics, 2012, 35(1): 193-199.
[20] ZOU J, ZHAO G Q, TENG J, et al. Highly sensitive detection of bisphenol A in real water samples based on in-situ assembled graphene nanoplatelets and gold nanoparticles composite[J]. Microchemical Journal, 2019, 145: 693-702.
[21] ZHANG S F, SHI Y F, WANG J M, et al. Nanocomposites consisting of nanoporous platinum-silicon and graphene for electrochemical determination of bisphenol A[J]. Microchimica Acta, 2020, 187(4): 241.
[22] SU B Y, SHAO H L, LI N, et al. A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode[J]. Talanta, 2017, 166: 126-132.
[23] ZHANG Y, ADAMS R D, SILVAL F M D. Absorption and glass transition temperature of adhesives exposed to water and toluene[J]. International Journal of Adhesion and Adhesives, 2014, 50: 85-92.
[24] 耿俊豪, 李雪芝, 周建平, 等. 基于rGO-AuNPs修饰丝网印刷电极的电化学生物传感器快速检测甲基对硫磷[J]. 食品与机械, 2024, 40(1): 47-54. GENG J H, LI X Z, ZHOU J P, et al. Rapid detection of methyl parathion by electrochemical biosensor based on Rgo-AuNPS modified screen-printed electrode[J]. Food & Machinery, 2018, 40(1): 47-54.
[25] AMORIM I, YU Z P, LIU L F. Cobalt-nickel phosphide supported on reduced graphene oxide for sensitive electrochemical detection of bisphenol A[J]. Heliyon, 2024, 10(2): 24070.
[26] ZHA A Y, ZHA Q B, LI Z, et al. Surfactant-enhanced electrochemical detection of bisphenol A based on Au on ZnO/reduced graphene oxide sensor[J]. Rare Metals, 2023, 42(4): 1 274-1 282.
[27] YUAN J J, HUANG B J, LU Y C, et al. Ultrasensitive electrochemical detection of bisphenol A using composites of MoS2 nanoflowers, CoS2 nano-polyhedrons and reduced graphene oxide[J]. Environmental Chemistry Letters, 2022, 20(5): 2 751-2 756.
[28] ZHANG X, WANG K P, ZHANG L N, et al. Phosphorus-doped graphene-based electrochemical sensor for sensitive detection of acetaminophen[J]. Analytica Chimica Acta, 2018, 1 036: 26-32.
[29] KAUSHAL S, KAUR M, KAUR N, et al. Heteroatom-doped graphene as sensing materials: A mini review[J]. RSC Advances, 2020, 10(48): 28 608-28 629.
[30] WANG K P, HUJ M, ZHANG X. Sensitive electrochemical detection of endocrine disruptor bisphenol A (BPA) in milk based on iodine-doped graphene[J]. Microchemical Journal, 2022, 173: 107047.
[31] CANEVARI T C, CINCOTTO F H, NAKAMURA M, et al. Efficient electrochemical biosensors for ethynylestradiol based on the laccase enzyme supported on single walled carbon nanotubes decorated with nanocrystalline carbon quantum dots[J]. Analytical Methods, 2016, 8(39): 7 254-7 259.
[32] CINCOTTO F H, OLIVEIRA F J, TRAVASSOS A C O, et al. Sensitive electrochemical biosensor for bisphenol A based on laccase immobilized on polypyrrole-3-carboxylic/Sb2O5/reduced graphene oxide hybrid nanomaterial[J]. Electroanalysis, 2023, 35(11): e202300086.
[33] 苏立强, 姜国强, 于亭亭, 等. 基于多壁碳纳米管表面印迹的己烯雌酚分子印迹电化学传感器制备及应用[J]. 环境化学, 2020, 39(12): 3 511-3 516. SU L Q, JIANG G Q, YU T T, et al. Preparation and application of diethylstilbestrol molecularly imprinted electrochemical sensor based on multi-wall carbon nanotubes[J]. Environmental Chemistry, 2020, 39(12): 3 511-3 516.
[34] 王芳, 刘子超, 王海宾, 等. 基于纳米金/羧基化碳纳米管的电化学传感器检测茶叶中多酚物质[J]. 太原理工大学学报, 2022, 53(4): 612-621. WANG F, LIU Z C, WANG H B, et al. Detection of polyphenols in tea by electrochemical sensor based on gold/carboxylated carbon nanotubes[J]. Journal of Taiyuan University of Technology, 2022, 53(4): 612-621.
[35] ZHANG Y J, CHANG B, YANG Q, et al. A sensitive electrochemical sensor based on La-SnO2 NF/CNTs modified glass carbon electrode for bisphenol A detection[J]. Materials Letters, 2022, 327: 133005.
[36] ZHOU Y, SHE X Y, WU Q, et al. Monoclinic WO3 nanosheets-carbon nanotubes nanocomposite based electrochemical sensor for sensitive detection of bisphenol A[J]. Journal of Electroanalytical Chemistry, 2022, 915: 116355.
[37] LI Z, ZENG H Y, CAO X J, et al. High-sensitive sensor for the simultaneous determination of phenolics based on multi-walled carbon nanotube/NiCoAl hydrotalcite electrode material[J]. Microchimica Acta, 2021, 188(9): 308.
[38] 唐婧. 基于碳纳米管复合修饰电极对酚类物质的检测研究[D]. 合肥: 安徽大学, 2017. TANG J. Study on the detection of phenols based on carbon nanotube composite modified electrode[D]. Hefei: Anhui University, 2017.
[39] 杨金龙. 单壁碳纳米管的控制生长与生长动力学[J]. 物理化学学报, 2020, 36(8): 16-17. YANG J L. Controlled growth and growth kinetics of single-walled carbon nanotubes[J]. Acta Physico-Chimica Sinica, 2020, 36(8): 16-17.
[40] LI Y, GEORGES G. Three decades of single-walled carbon nanotubes research: Envisioning the next breakthrough applications[J]. ACS Nano, 2023, 17(20): 19 471-19 473.
[41] 吉忠海, 张莉莉, 汤代明, 等. 金属催化剂控制生长单壁碳纳米管研究进展[J]. 金属学报, 2018, 54(11): 1 665-1 682. JI Z H, ZHANG L L, TANG D M, et al. Research progress on controlled growth of single-walled carbon nanotubes by metal catalysts[J]. Acta Metallica Sinica, 2018, 54(11): 1 665-1 682.
[42] GAO Y, CAO Y, YANG D G, et al. Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode[J]. Journal of Hazardous Materials, 2012, 199: 111-118.
[43] ZHANG L, WEN Y P, YAO Y Y, et al. Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A[J]. Chinese Chemical Letters, 2014, 25(4): 517-522.
[44] NASEHI P, MOGHADDAM M S, REZAEI S N, et al. Monitoring of bisphenol A in water and soft drink products using electrochemical sensor amplified with TiO2-SWCNTs and ionic liquid[J]. Journal of Food Measurement and Characterization, 2022, 16(3): 2 440-2 445.
[45] BEITOLLAHI H, MOVAHEDIFAR F, TAJIK S, et al. A review on the effects of introducing CNTs in the modification process of electrochemical sensors[J]. Electroanalysis, 2019, 31(7): 1 195-1 203.
[46] LU X C, SONG L, DING T T, et al. CuS-MWCNT based electrochemical sensor for sensitive detection of bisphenol A[J]. Russian Journal of Electrochemistry, 2017, 53(4): 366-373.
[47] HAN E, PAN Y Y, LI L, et al. Development of sensitive electrochemical sensor based on chitosan/MWCNTs-AuPtPd nanocomposites for detection of bisphenol A[J]. Chemosensors, 2023, 11(6): 11060331.
[48] ALI M Y, ALAM A U, HOWLADER M M R. Fabrication of highly sensitive bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and β-cyclodextrin[J]. Sensors and Actuators B-Chemical, 2020, 320: 128319.
[49] SARIKAYA S, IPEKCI H H, KOTAN H, et al. Inkjet printing of highly dispersed, shortened, and defect-rich MWCNTs to construct flexible electrochemical sensors for the detection of bisphenol A in milk samples[J]. Carbon, 2023, 214: 118362.
[50] MO F Y, XIE J W, WU T T, et al. A sensitive electrochemical sensor for bisphenol A on the basis of the AuPd incorporated carboxylic multi-walled carbon nanotubes[J]. Food Chemistry, 2019, 292: 253-259.
[51] BUZAEVA M V, MAKAROVA I A, VAGANOVA E S, et al. Surface modification of multiwalled carbon nanotubes to impart technological properties[J]. Reviews and Advances in Chemistry, 2023, 13(2): 160-166.
[52] CHEN F Z, JIANG Z Y, YANG S Y. Dicyandiamide-derived g-C3N4 as an efficient electro-catalyst for detection of bisphenol A in food[J]. Journal of Food Measurement and Characterization, 2024, 185(10): 478.
[53] GAN X R, ZHAO H M, SCHIRHAGL R, et al. Two-dimensional nanomaterial based sensors for heavy metal ions[J]. Microchimica Acta, 2018, 185(10): 478.
[54] YAN K, YANG Y H, ZHANG J D. A self-powered sensor based on molecularly imprinted polymer-coupled graphitic carbon nitride photoanode for selective detection of bisphenol A[J]. Sensors and Actuators B-Chemical, 2018, 259: 394-401.
[55] ZOU M M, ZOU S Y, HU C Y, et al. Fast and sensitive detection of bisphenol A and 4-n-octylphenol in foods based on a 2D graphitic carbon nitride (g-C3N4)/gold nano-composite film[J]. Chemistry Africa, 2021, 4(2): 367-377.
[56] PONNAIAH S K, PERIAKARUPPAN P, MUTHUPANDIAN S. Ultrasonic energy-assisted in-situ synthesis of Ru0/PANI/g-C3N4 nanocomposite: Application for picomolar-level electrochemical detection of endocrine disruptor (Bisphenol-A) in humans and animals[J]. Ultrasonics Sonochemistry, 2019, 58: 104629.
[57] DEVECI H A, KAYA M M, KAYA I, et al. Bisphenol A imprinted electrochemical sensor based on graphene quantum dots with boron functionalized g-C3N4 in food samples[J]. Biosensors-Basel, 2023, 13(7): 725.
[58] WANG L P, MENG Y, ZHANG Y, et al. Photoelectrochemical aptasensing of thrombin based on multilayered gold nanoparticle/graphene-TiO2 and enzyme functionalized graphene oxide nanocomposites[J]. Electrochimica Acta, 2017, 249: 243-252.
[59] WANG L, DASH S, NG C Y, et al. A review of computational tools for design and reconstruction of metabolic pathways[J]. Synthetic and Systems Biotechnology, 2017, 2(4): 243-252.
[60] HOU H L, LIU H B, GAO F M, et al. Packaging BiVO4 nanoparticles in ZnO microbelts for efficient photoelectrochemical hydrogen production[J]. Electrochimica Acta, 2018, 283: 497-508.
[61] XU L, DUAN W, CHEN F, et al. A photoelectrochemical aptasensor for the determination of bisphenol A based on the Cu (I) modified graphitic carbon nitride[J]. Journal of Hazardous Materials, 2020, 400: 123162.
[62] YAN P C, MO Z, XU L, et al. Plasmonic Bi microspheres doped carbon nitride heterojunction: Intensive photoelectrochemical aptasensor for bisphenol A[J]. Electrochimica Acta, 2019, 319: 10-17.
[63] YANG L Q, ZHAO Z J, HU J, et al. Copper oxide nanoparticles with graphitic carbon nitride for ultrasensitive photoelectrochemical aptasensor of bisphenol A[J]. Electroanalysis,2020, 32(7): 1 651-1 658.
[64] 陶淞源, 朱守俊, 杨柏. 新型碳基发光纳米材料—碳点: 研究进展及展望[J]. 科学观察, 2019(6): 35-37. TAO S Y, ZHU S J, YANG B. New carbon-based luminescent nanomaterials: Carbon points: Research progress and prospects[J]. Scientific Observation, 2019(6): 35-37.
[65] YAO J, LIU C H, YANG M. An ultrasensitive and highly selective electrochemical aptasensor for environmental endocrine disrupter bisphenol A determination using gold nanoparticles/nitrogen, sulfur, and phosphorus Co-doped carbon dots as signal enhancer and its electrochemical kinetic research[J]. Journal of the Electrochemical Society, 2019, 166(13): B1 161-B1 170.
[66] RENLI D, KAAR S C, ZTRK F, et al. Electrochemical (bio)sensors based on carbon quantum dots, ionic liquid and gold nanoparticles for bisphenol A[J]. Analytical Biochemistry, 2023, 662: 115002.
[67] RAJESH K, KUMAR D R, BALAJI B P, et al. Carbon dot-V2O5 layered nanoporous architectures for electrochemical detection of Bisphenol A: An analytical approach[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108206.
[68] JYOT I, REDONDO E, ALDUHAISH O, et al. 3D-printed nanocarbon sensors for the detection of chlorophenols and nitrophenols: Towards environmental applications of additive manufacturing[J]. Electrochemistry Communications, 2021, 125: 106984.
[69] 亮田, 蓝海天, 静李, 等. 基于碳基材料的柔性电化学传感器研究进展[J]. 分析化学进展, 2021, 11(3): 108-116. LIANG T, LAN H T, JING L, et al. Research progress of flexible electrochemical sensors based on carbon-based materials[J]. Advances in Analytical Chemistry, 2021, 11(3): 108-116.
[70] DONAR Y O, BILGE S, BAYRAMOGLU D, et al. Recent developments and modification strategies in electrochemical sensors based on green nanomaterials for catechol detection[J]. Trends in Environmental Analytical Chemistry, 2024, 41: e00223.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.