Abstract
Nanomaterials have been widely used in the detection of heavy metal ions in food due to their large specific surface area, good stability, special structure, easy modification, and good biocompatibility. This review focuses on the research and application status of nanomaterials such as carbon nanotubes, graphene, carbon quantum dots, metal-organic frameworks and nanoenzymes in the detection of heavy metal ions in food. The challenges and application prospects of nanomaterials in the detection of heavy metal ions in food are also discussed.
Publication Date
5-21-2024
First Page
233
Last Page
240
DOI
10.13652/j.spjx.1003.5788.2023.80754
Recommended Citation
Yiping, WANG; Shufang, SU; Yalan, YUAN; and Ning, MAO
(2024)
"Research progress of nanomaterials in the rapid detection of heavy metal ions in food,"
Food and Machinery: Vol. 40:
Iss.
4, Article 33.
DOI: 10.13652/j.spjx.1003.5788.2023.80754
Available at:
https://www.ifoodmm.cn/journal/vol40/iss4/33
References
[1] 傅亚平, 吴卫国. 食品中重金属检测与脱除技术研究进展[J]. 食品与机械, 2015, 31(2): 252-256.
FU Y P, WU W G. Progress on detection and removal technology of heavy metals in food[J]. Food & Machinery, 2015, 31(2): 252-256.
[2] GONG Z Y, CHAN H T, CHEN Q L, et al. Application of nanotechnology in analysis and removal of heavy metals in food and water resources[J]. Nanomaterials, 2021, 11(7): 1 792.
[3] 孟登辉, 曹慧, 徐斐, 等. 双频超声辅助酶解提取—石墨炉原子吸收光谱法测定玉米中镉和铅[J]. 分析试验室, 2022, 41(1): 75-80.
MENG D H, CAO H, XU F, et al. Determination of Cd (Ⅱ) and Pb (Ⅱ) in corn using dual-frequency ultrasound-assisted enzymatic digestion coupled with graphite furnace atomic absorption spectrometry[J]. Chinese Journal of Analysis Laboratory, 2022, 41(1): 75-80.
[4] LIMA E A, CUNHA F A S, OLIVEIRAl M J, et al. Fast automated method for the direct determination of total antimony in grape juice samples by hydride generation and atomic fluorescence spectrometric detection without external pretreatment[J]. Food Chemistry, 2022, 381: 132194.
[5] 王一凡, 于铭心, 裴龙英, 等. 高清X射线荧光光谱法快速测定干制黑木耳中镉和砷的含量[J]. 食品工业科技, 2023, 44(9): 333-339.
WANG Y F, YU M X, PEI L Y, et al. Rapid detection of cadmium and arsenic in dried auricularia auricula by high definition X-ray fluorescence spectrometry[J]. Science and Technology of Food Industry, 2023, 44(9): 333-339.
[6] YAGMUROGLU O. Determination of trace lead in cleavers (Galium aparine) tea by Uv-vis spectrophotometry after preconcentration with deep eutectic solvent/DTZ probe-based liquid-liquid microextraction[J]. Journal of Food Composition and Analysis, 2023, 118: 105164.
[7] BARBARA F, BARBARA M. Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry[J]. Food Chemistry, 2014, 147: 302-306.
[8] KARIMA B, NATIVIDAD R M, BADREDINE S, et al. Determination of heavy metal content in vegetables and oils from spain and morocco by inductively coupled plasma mass spectrometry[J]. Analytical Letters, 2012, 48(8): 907-919.
[9] WANG Y Z, YANG H, PSCHENITZA M. Highly sensitive and specific determination of mercury ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody[J]. Analytical and Bioanalytical Chemistry, 2012, 403: 2 519-2 528.
[10] 周睿璐, 付大友, 李雪梅, 等. 试纸法快速检测茶叶中铅含量的研究[J]. 应用化工, 2017, 46(7): 1 318-1 320, 1 324.
ZHOU R L, FU D Y, LI X M, et al. Study on rapid detection of lead content in tea by test paper method[J]. Applied Chemical Industry, 2017, 46(7): 1 318-1 320, 1 324.
[11] 袁敏, 王梦雪, 郑玉竹, 等. 基于核酸适配体和金纳米颗粒的荧光比色双模式检测As(Ⅲ) [J]. 分析化学, 2021, 49(1): 76-84.
YUAN M, WANG M X, ZHENG Y, et al. Aptamer/gold nanoparticles-based fluorometric and colorimetric dual-mode detection of arsenite[J]. Chinese Journal of Analytical Chemistry, 2021, 49(1): 76-84.
[12] YIN J Q, ZHAI H G, WANG Y, et al. COF/MWCNTs/CLS-based electrochemical sensor for simultaneous and sensitive detection of multiple heavy metal ions[J]. Food Analytical Methods, 2022, 15(12): 3 244-3 256.
[13] MANJU B G, SWAMINATHAN S, UMA M K, et al. A review on detection of heavy metal ions in water-An electrochemical approach[J]. Sensors and Actuators B: Chemical, 2015, 213: 515-533.
[14] GADUPUDI P R, CHUNGSYING L, SU F S. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review[J]. Separation and Purification Technology, 2007, 58(1): 224-231.
[15] WANG D Y, WANG D W, CHEN H A, et al. Photoluminescence quenching of graphene oxide by metal ions in aqueous media[J]. Carbon, 2015, 82: 24-30.
[16] 丁可武, 代莉莉, 黄迪惠, 等. 基于Bi-Co-BTC电化学传感器检测食品中Zn2+ Cd2+ Pb2+含量[J]. 食品与机械, 2023, 39(9): 50-56.
DING K W, DAI L L, HUANG D H, et al. Determination of Zn2+ Cd2+ Pb2+ in food base on Bi-Co-BTC electrochemical sensor[J]. Food & Machinery, 2023, 39(9): 50-56.
[17] LI J, LI X D, AHMED A, TASAWAR H, et al. Synthesis of highly porous inorganic adsorbents derived from metal-organic frameworks and their application in efficient elimination of mercury[J]. Journal of Colloid and Interface Science, 2018, 517: 61-71.
[18] 钟平胜, 田春妹, 任佳丽. 电化学修饰电极在食品重金属快速检测中的研究进展[J]. 食品与机械, 2018, 34(4): 192-196.
ZHONG P S, TIAN C M, REN J L. Advances in application of electrochemical modified electrode in the fast detection of heavy metal[J]. Food & Machinery, 2018, 34(4): 192-196.
[19] 王坤, 李忠海. 碳纳米管改性及其在食品检测中的应用进展[J]. 食品与机械, 2016, 32(3): 217-221.
WANG K, LI Z H. Progress on modification of carbon nanotubes and applications in food detection[J]. Food & Machinery, 2016, 32(3): 217-221.
[20] SEEF S F, MOHAMMED A A, WAN Z J, et al. Review on heavy metal adsorption processes by carbon nanotubes[J]. Chemosphere, 2019, 230: 783-793.
[21] 王忠政, 洪琦. 基于多壁碳纳米管/Nafion修饰电极的溶出伏安法测定大豆和大米重金属铅含量[J]. 中国油料作物学报, 2020, 42(3): 350-355.
WANG Z Z, HONG Q. Determination of heavy metal lead in soybean and rice use a multi-walled carbon nanotube/Nafion modified electrode by stripping voltammetry[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(3): 350-355.
[22] PRIYA T, DHANALAKSHMI N, THENNARASU S, et al. Synchronous detection of cadmium and lead in honey, cocos nucifera and egg white samples using multiwalled carbon nanotube/hyaluronic acid/amino acids nanocomposites[J]. Food Chemistry, 2020, 317: 126430.
[23] 冯通, 钟佳妙, 陈开茶, 等. 负载爆米花状铜粒子的植酸掺杂碳纳米管网络用于Hg2+的高灵敏检测[J]. 华东理工大学学报(自然科学版), 2023, 49(6): 809-817.
FENG T, ZHONG J M, CHEN K C, et al. Highly sensitive determination of Hg2+ based on phytic acid doped carbon nanotube network loaded with popcorn copper[J]. Journal of East China University of Science and Technology, 2023, 49(6): 809-817.
[24] WANG X, XU Y, LI Y, et al. Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor[J]. Food Chemistry, 2021, 357: 129761.
[25] XU J, ZHEN C, ZHANG Y L, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism[J]. Chemosphere, 2018, 195: 351-364.
[26] PENG W J, LI H Q, LIU Y Y, et al. A review on heavy metal ions adsorption from water by graphene oxide and its composites[J]. Journal of Molecular Liquids, 2017, 230: 496-504.
[27] ZHANG L, PENG D, LIANG R P, et al. Graphene-based optical nanosensors for detection of heavy metal ions[J]. Trac Trends in Analytical Chemistry, 2018, 102: 280-289.
[28] TAN Z, WU W Q, FENG C Q, et al. Simultaneous determination of heavy metals by an electrochemical method based on a nanocomposite consisting of fluorinated graphene and gold nanocage[J]. Microchimica Acta, 2022, 187(414): 1-9.
[29] 翟琨, 王联芝, 向东山. 双色荧光定量检测大米中的汞[J]. 食品科学, 2015, 36(2): 179-183.
ZHAI K, WANG L Z, XIANG D S. Dual color fluorescence quantitative detection of mercury in rice[J]. Food Science, 2015, 36(2): 179-183.
[30] LI H H, HUANG X Q, MEHEDI M, et al. Dual-channel biosensor for Hg2+ sensing in food using Au@Ag/graphene-upconversion nanohybrids as metal-enhanced fluorescence and SERS[J]. Microchemical Journal, 2020, 154: 104563.
[31] 彭爱红, 彭家伟, 陈晓梅. 可再生电化学传感器同步检测贝类中痕量铅和镉[J]. 中国食品学报, 2021, 21(11): 252-260.
PENG A H, PENG J W, CHEN X M. A reusable electrochemical sensor for simultaneous determination of trace lead and cadmium in shellfish[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(11): 252-260.
[32] MA X T, LI S R, HESSEL V, et al. Synthesis of luminescent carbon quantum dots by microplasma process[J]. Chemical Engineering and Processing: Process Intensification, 2019, 140: 29-35.
[33] RASHMITA D, RAJIB B, PANCHANAN P. Carbon quantum dots from natural resource: A review[J]. Materials Today Chemistry, 2018, 8: 96-109.
[34] LI W, HU X T, LI Q, et al. Copper nanoclusters@nitrogen-doped carbon quantum dots-based ratiometric fluorescence probe for lead ions detection in porphyra[J]. Food Chemistry, 2020, 320: 126623.
[35] GAN Z Y, HU X T, HUANG X W, et al. A dual-emission fluorescence sensor for ultrasensitive sensing mercury in milk based on carbon quantum dots modified with europium complexes[J]. Sensors and Actuators B: Chemical, 2020, 328: 128997.
[36] 孟铁宏, 钟婷, 姜艳萍, 等. 微波一步法制备氮掺杂碳量子点及其对蛇莓中Cu2+的检测[J]. 化学研究与应用, 2019, 31(10): 1 732-1 738.
MENG T H, ZHONG T, JIANG Y P, et al. Preparation of nitrogen-doped carbon quantum dots by microwave one-step method and detection of Cu2+ in snakesberry[J]. Chemical Research and Application, 2019, 31(10): 1 732-1 738.
[37] ROMAIN G, PLUTON P, KEVIN A, et al. Liquid metal-organic frameworks[J]. Nature Materials, 2017, 16: 1 149-1 154.
[38] FRANCESC X, LLABRES X, AVELINO C, et al. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors[J]. Journal of Physical Chemistry C, 2007, 111(1): 80-85.
[39] ZHENG Y, ZHENG S S, XUE H G, et al. Metal-organic frameworks/graphene-based materials: Preparations and applications[J]. Advanced Functional Materials, 2018, 47: 1804950.
[40] HOI R M, LIM D W, MYUNGHYUN P S. Fabrication of metal nanoparticles in metal-organic frameworks[J]. Chemical Society Reviews, 2013, 42: 1 807-1 824.
[41] 刘钊, 马德运, 孙志会. 一种锌金属有机骨架(Zn-MOF)材料的荧光光谱法在食品Fe3+检测中的应用[J]. 食品科学, 2018, 39(24): 327-331.
LIU Z, MA D Y, SUN Z H. Determination of Fe3+ in foods by fluorescence spectroscopy using a zinc-based metal-organic framework material[J]. Food Science, 2018, 39(24): 327-331.
[42] CHEN Y J, SUN R, ZHU W H, et al. Desirability of position 2, 2′-bipyridine group into COFs for the fluorescence sensing of Ni[J]. Sensors and Actuators B: Chemical, 2021, 344: 130216.
[43] SINGH S, NUMAN A, ZHAN Y, et al. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury ions in canned tuna fish and tap water based on a copper metal-organic framework[J]. Journal of Hazardous Materials, 2020, 399: 123042.
[44] HAN J J, ZHANG L, HU L M, et al. Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157:H7 in milk[J]. Journal of Dairy Science, 2018, 101(7): 5 770-5 779.
[45] WANG Q Q, WEI H, ZHANG Z Q, et al. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay[J]. Trac Trends in Analytical Chemistry, 2018, 105: 218-224.
[46] DUAN D M, FAN K L, ZHANG D X, et al. Nanozyme-strip for rapid local diagnosis of Ebola[J]. Biosensors and Bioelectronics, 2015, 74: 134-141.
[47] HONG C Y, MENG X Q, HE J Y, et al. Nanozyme: A promising tool from clinical diagnosis and environmental monitoring to wastewater treatment[J]. Particuology, 2022, 71: 90-107.
[48] 李芙蓉, 向发椿, 曹丽萍, 等. 纳米酶在食品检测中的应用研究进展[J]. 食品科学, 2022, 43(1): 285-297.
LI F R, XIANG F C, CAO L P, et al. Recent advances in applications of nanozymes in food detection[J]. Food Science, 2022, 43(1): 285-297.
[49] TANG Y L, GOU W X, LU X, et al. Convenient colorimetric-fluorescent dual-mode recognition of I- in agricultural products and visual determination of Hg2+ in drinking beverages using Ag-Pt bimetal quantum dot nanozyme[J]. Food Chemistry, 2023, 408: 135259.
[50] YAN Z Q, XING L, ZHAO L, et al. β-Cyclodextrin and graphene oxide co-strengthened AgRu bimetal mesoporous nanozyme: An efficient strategy for visual detection and removal of toxic Hg2+ and Cl-[J]. Journal of Environmental Chemical Engineering, 2022, 10: 108242.
[51] 赵海萍, 南丽娟, 雒雪丽, 等. Ni/Co层状氢氧化物模拟氧化物酶可视化检测海产品中Hg2+[J]. 食品与发酵工业, 2021, 47(8): 204-211.
ZHAO H P, XIANG L J, LUO X L, et al. Ni/Co layered hydroxide based oxidase-mimicking enzyme for colorimetric detection of Hg2+ in seafood[J]. Food and Fermentation Industries, 2021, 47(8): 204-211.