Abstract
Objective: To evaluate the effects of mechanical processing on the physicochemical properties of oat β-glucan and its in vitro fermentation. Methods: Oat coarse grains, oat flakes, and oat flour were respectively produced through mechanical progressing methods such as steel cutting, table pressing, and grinding. Then, scanning electron microscopy was used to observe the microstructure, the content, dissolution rate and relative molecular weight of oat β-glucan were determined, and the colon environment was simulated in vitro for fermentation. Results: The total β-glucan content and dissolution rate of steel-cutting oat were higher than those of untreated sample. The total β-glucan content of oat flake and oat flour were lower than untreated oat, but the dissolution rate was higher than it. Untreated oat showed a lower fermentation rate, with a significantly lower acid and gas production rate than those of steel-cutting oat, oat flake, and oat flour. The total short chain fatty acid content of untreated oat produced by fermentation was the lowest, but the content of propionic acid and butyric acid was significantly higher than the other three groups. Conclusion: Mechanical progressing can affect the in vitro fermentation characteristics of oats by altering the integrity of their cell wall structure, as well as the content and dissolution rate of β-glucan. Moderate processing can contribute to the health benefits of oats.
Publication Date
5-21-2024
First Page
20
Last Page
26
DOI
10.13652/j.spjx.1003.5788.2024.80202
Recommended Citation
Hang, LI; Jing, WANG; Anwei, CHENG; Xufeng, WANG; and Kaiyun, LUO
(2024)
"Effects of mechanical processing on the physicochemical properties of oat β-glucan and its in vitro fermentation,"
Food and Machinery: Vol. 40:
Iss.
4, Article 4.
DOI: 10.13652/j.spjx.1003.5788.2024.80202
Available at:
https://www.ifoodmm.cn/journal/vol40/iss4/4
References
[1] WOLEVER T M, JENKINS A L, PRUDENCE K, et al. Effect of adding oat bran to instant oatmeal on glycaemic response in humans: A study to establish the minimum effective dose of oat β-glucan[J]. Food & Function, 2018, 9(3): 1 692-1 700.
[2] TOSH S M. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products[J]. European Journal of Clinical Nutrition, 2013, 67(4): 310-317.
[3] 温瑞雪, 宋伟, 罗卓婷, 等. 不同加工处理方式对燕麦营养成分影响的研究进展[J]. 食品与发酵工业, 2023, 49(4): 295-303.
WEN R X, SONG W, LUO Z T, et al. Research progress on effects of different progressing methods on nutritional components of oats[J]. Food and Fermentation Industries, 2023, 49(4): 295-303.
[4] GRUNDY M M L, FARDET A, TOSH S M, et al. Processing of oat: The impact on oat's cholesterol lowering effect[J]. Food & Function, 2018, 9(3): 1 328-1 343.
[5] 樊蕊. β-葡聚糖复合凝胶的超高压/热诱导制备技术及其性状评价[J]. 食品与机械, 2019, 35(2): 15-20, 61.
FAN R. The ultrahigh-pressure/thermally induced technologies of the β-glucan mixed gel and the evaluation system for their properties[J]. Food & Machinery, 2019, 35(2): 15-20, 61.
[6] RAGUINDIN P F, ITODO O A, STOYANOV J, et al. A systematic review of phytochemicals in oat and buckwheat[J]. Food Chemistry, 2021, 338: 127982.
[7] 申瑞玲, 朱莹莹, 李林. 燕麦β-葡聚糖调节肠道菌群与降脂减肥作用的研究进展[J]. 食品工业科技, 2014, 35(8): 364-366, 373.
SHEN R L, ZHU Y Y, LI L. Research progress in the intestinal flora and anti-obesity effect of oat β-glucan[J]. Science and Technology of Food Industry, 2014, 35(8): 364-366, 373.
[8] FROST G, SLEETH M L, SAHURI-ARISOYLU M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J]. Nature Communications, 2014, 5: 3 611.
[9] ZHANG F, ZHAO Y G, WANG H, et al. Alterations in the milk metabolome of dairy cows supplemented with different levels of calcium propionate in early lactation[J]. Metabolites, 2022, 12(8): 699.
[10] ZHANG L, LIU C D, JIANG Q Y. Butyrate in energy metabolism: There is still more to learn[J]. Trends in Endocrinology & Metabolism, 2021, 32(3): 159-169.
[11] LAITINEN M, MKEL-SALMI N, MAINA N H. Gelation of cereal β-glucan after partial dissolution at physiological temperature: Effect of molecular structure[J]. Food Hydrocolloids, 2023, 141: 108722.
[12] MKELINEN H, ANTTILA H, SIHVONEN J, et al. The effect of β-glucan on the glycemic and insulin index[J]. European Journal of Clinical Nutrition, 2007, 61(6): 779-785.
[13] REGAND A, CHOWDHURY Z, TOSH S M, et al. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility[J]. Food Chemistry, 2011, 129(2): 297-304.
[14] WANG Y N, AMES N P, TUN H M. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk[J]. Frontiers in Microbiology, 2016, 7: 171563.
[15] 田斌强, 邓乾春, 谢笔钧. 发芽燕麦淀粉的分子结构与体外消化性[J]. 现代食品科技, 2014, 30(6): 87-91.
TIAN B Q, DENG Q C, XIE B J. Molecular structure and in vitro digestibility of geiminated oat starch[J]. Modern Food Science and Technology, 2014, 30(6): 87-91.
[16] 刘燕, 罗游, 魏岱岳, 等. 红曲菌固态发酵对燕麦多糖体外抗氧化及抑制淀粉酶活性的影响[J]. 现代食品科技, 2019, 35(5): 95-101, 130.
LIU Y, LUO Y, WEI D Y, et al. Effect of solid-state fermentation with monascus anka on the compositions, in vitro antioxidation and amylase-inhibitory activity of oat polysaccharides[J]. Modern Food Science and Technology, 2019, 35(5): 95-101, 130.
[17] 汪新洁, 刘凤杰, 郑俊, 等. 不同挤压膨化温度对燕麦片风味成分的影响[J]. 现代食品科技, 2018, 34(6): 188-196, 309.
WANG X J, LIU F J, ZHENG J, et al. Effects of different extrusion temperatures on the flavor components of oatmeal[J]. Modern Food Science and Technology, 2018, 34(6): 188-196, 309.
[18] 顾军强, 钟葵, 周素梅, 等. 不同热处理燕麦片风味物质分析[J]. 现代食品科技, 2015, 31(4): 282-288, 62.
GU J Q, ZHENG K, ZHOU S M, et al. Effects of various heat treatments on volatile compounds in oatmeal[J]. Modern Food Science and Technology, 2015, 31(4): 282-288, 62.
[19] 王如月, 余讯, 徐静静, 等. 燕麦β-葡聚糖及其寡糖对肠道菌群结构和代谢的影响[J]. 食品与发酵工业, 2020, 46(11): 85-91, 97.
WANG R Y, YU X, XU J J, et al. Effects of oat β-glucan and its oligosaccharides on composition and metabolism of intestinal microorganisms[J]. Food and Fermentation Industries, 2020, 46(11): 85-91, 97.
[20] 韩勤英. β-葡聚糖的检测方法及结果对比分析[J]. 中外酒业, 2015(11): 29-31.
HAN Q Y. Assay methods and comparative analysis of results for β-gulcan[J]. Global Alcinfo, 2015(11): 29-31.
[21] PREZ-BURILLO S, MOLINO S, NAVAJAS-PORRAS B, et al. An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality[J]. Nature Protocols, 2021, 16(7): 3 186-3 209.
[22] GUUNDY M M L, QUINT J, RIEDER A, et al. Impact of hydrothermal and mechanical processing on dissolution kinetics and rheology of oat β-glucan[J]. Carbohydrate Polymers, 2017, 166: 387-397.
[23] CYRAN M R, SNOCHOWSKA K K. Evidence of intermolecular associations of β-glucan and high-molar mass xylan in a hot water extract of raw oat groat[J]. Carbohydrate Polymers, 2021, 272: 118463.
[24] 陈中伟, 汪玲, 牛瑞, 等. 裸燕麦米和燕麦粉加工所得麸皮中β-葡聚糖和酚酸的分布[J]. 食品科学, 2018, 39(10): 1-6.
CHEN Z W, WANG L, NIU R, et al. Distribution of β-glucan and phenolic acids in oat bran (Avena nuda) from the processing of oat roce and oat flour[J]. Food Science, 2018, 39(10): 1-6.
[25] HENRION M, FRANCEY C, L K A. Cereal β-glucans: The impact of processing and how it affects physiological responses[J]. Nutrients, 2019, 11(8): 1 729.
[26] ZHAO Y, ZHOU H M, HUANG Z H. Different aggregation states of barley β-glucan molecules affects their solution behavior: A comparative analysis[J]. Food Hydrocolloids, 2020, 101: 105543.
[27] DJURLE S, ANDERSSON A A, ANDERSSON R. Milling and extrusion of six barley varieties, effects on dietary fibre and starch content and composition[J]. Journal of Cereal Science, 2016, 72: 146-152.
[28] 李金冉. 食品加工对燕麦β-葡聚糖理化性质和生理活性的影响[D]. 上海: 上海海洋大学, 2021: 3.
LI J R. The influence of food processing on the physicochemical and physiological properties of oat β-glucan[D]. Shanghai: Shanghai Ocean University, 2021: 3.
[29] 申瑞玲, 王章存, 姚惠源. 燕麦β-葡聚糖对小鼠肠道菌群的影响[J]. 食品科学, 2005(2): 208-212.
SHEN R L, WANG Z C, YAO H Y. Effect of oat β-glucan on intestinal flora in mice[J]. Food Science, 2005(2): 208-212.
[30] BHATTARAI R R, DHITAL S, WILLIAMS B A, et al. In vitro fermentation of legume cells and components: Effects of cell encapsulation and starch/protein interactions[J]. Food Hydrocolloids, 2021, 113: 106538.
[31] MCALLISTER T A, NEWBOLD C J. Redirecting rumen fermentation to reduce methanogenesis[J]. Australian Journal of Experimental Agriculture, 2008, 48(2): 7-13.
[32] BAI J Y, LI Y, ZHANG W H, et al. Source of gut microbiota determines oat β-glucan degradation and short chain fatty acid-producing pathway[J]. Food Bioscience, 2021, 41: 101010.
[33] ABBEELE P V D, KAMIL A, FLEIGE L, et al. Different oat ingredients stimulate specific microbial metabolites in the gut microbiome of three human individuals in vitro[J]. ACS Omega, 2018, 3(10): 12 446-12 456.
[34] 金姝, 张斌, 高彤, 等. 粒径和含结合酚不溶性膳食纤维对白芸豆皮体外发酵特性的影响[J]. 食品工业科技, 2024, 45(1): 118-127.
JIN S, ZHANG B, GAO T, et al. Effect of particle size and phenolics bounded-insoluble dietary fiber on the in vitro fermentation properties of white kidney bean skin[J]. Science and Technology of Food Industry, 2024, 45(1): 118-127.
[35] STEWART M L, SLAVIN J L. Particle size and fraction of wheat bran influence short-chain fatty acid production in vitro[J]. British Journal of Nutrition, 2009, 102(10): 1 404-1 407.
[36] TUNCIL Y E, THAKKAR R D, MARCIA A D R, et al. Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions[J]. Scientific Reports, 2018, 8(1): 16655.