•  
  •  
 

Corresponding Author(s)

胡志刚(1974—),男,武汉轻工大学教授,博士生导师,博士。E-mail:hzg@whpu.edu.cn

Abstract

Objective: To achieve reasonable and effective grading of live crayfish, and improve the work of grading crayfish. Methods: The construction of crayfish image shooting platform, to obtain the original image of crayfish, and the semantic segmentation dataset which segmented the three parts of the crayfish head, crayfish pincers, and crayfish tail was created. The correlation between the actual weight of three parts and the corresponding pixel size in the dataset was analyzed, and a new grading standard for crayfish which was according to the proportion of head and pincers in the whole crayfish was summarized. The DeepLab V3+ neural network was trained using the crayfish semantic segmentation dataset, and the test set was used to test the semantic segmentation effect of the model and the accuracy of crayfish grading. Semantic segmentation evaluation criteria were mean intersection over union (MIoU), mean pixel accuracy (MPA) and pixel accuracy (PA). Results: The MIoU of the crayfish semantic segmentation test set was 94.35%, the MPA was 96.56%, and the PA was 99.44%. The accuracy of crayfish grading in the test set was 85.56%. Conclusion: The DeepLab V3+ model can accurately segment crayfish images and estimate the proportion of crayfish head and pincers, and the model can complete the crayfish grading task.

Publication Date

7-22-2024

First Page

81

Last Page

87,218

DOI

10.13652/j.spjx.1003.5788.2023.80796

References

[1] 全沁果, 张泽伟, 陈铭, 等. 小龙虾的综合利用研究进展[J]. 食品研究与开发, 2019, 40(3): 213-219. QUAN Q G, ZHANG Z W, CHEN M, et al. Research progress on comprehensive utilization of crayfish[J]. Food Research and Development, 2019, 40(3): 213-219.
[2] 苏雨曈, 余进祥, 傅雪军, 等. 小龙虾预制食品品质综述[J]. 包装工程, 2023, 44(9): 71-80. SU Y T, YU J X, FU X J, et al. A review on the quality of crayfish prepared food[J]. Packaging Engineering, 2023, 44(9): 71-80.
[3] 高竟博, 李晔, 杜闯. 基于深度学习的小龙虾分级算法[J]. 现代计算机, 2020(26): 7. GAO J B, LI Y, DU C. Crayfishgrading algorithm based on deep learning[J]. Modern Computer, 2020(26): 7.
[4] NYALALA I, OKINDA C, KUNJIE C, et al. Weight and volume estimation of poultry and products based on computer vision systems: A review[J]. Poultry Science, 2021, 100(5): 101072.
[5] SANT'ANA D A, PACHE M C B, MARTINS J, et al. Weighing live sheep using computer vision techniques and regression machine learning[J]. Machine Learning with Applications, 2021, 5: 100076.
[6] GARABAGHI F H, BENZER R, BENZER S, et al. Effect of polynomial, radial basis, and Pearson VII function kernels in support vector machine algorithm for classification of crayfish[J]. Ecological Informatics, 2022, 72: 101911.
[7] 王阳, 杨晨, 曾瑞敏, 等. 基于机器视觉的小龙虾分级算法设计[J]. 科学技术与工程, 2019, 19(17): 234-238. WANG Y, YANG C, ZENG R M, et al. Design of crayfish grading algorithm based on machine vision[J]. Science Technology and Engineering, 2019, 19(17): 234-238.
[8] WANG C, LIU Y, XIA Z Z, et al. Convolutional neural network-based portable computer vision system for freshness assessment of crayfish (Prokaryophyllus clarkii) [J]. Journal of Food Science, 2022, 87(12): 5 330-5 339.
[9] WANG M, LIU B Y, FOROOSH H. Factorized convolutional neural networks[C]// Proceedings of the IEEE International Conference on Computer Vision Workshops. [S.l.]: IEEE, 2017: 545-553.
[10] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// Proceedings of the IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2017: 764-773.
[11] 尚雪阳. 小龙虾轮廓识别与头尾定位方法研究[D]. 武汉: 武汉轻工大学, 2022: 47-52. SHANG X Y. Research on contour recognition and head and tail location method of crayfish[D]. Wuhan: Wuhan Polytechnic University, 2022: 47-52.
[12] 谢新林, 尹东旭, 续欣莹, 等. 基于图像级标签的弱监督图像语义分割综述[J]. 太原理工大学学报, 2021, 52(6): 894-906. XIE X L, YIN D X, XU X Y, et al. A survey of weakly supervised image semantic segmentation based on image-level labels[J]. Journal of Taiyuan University of Technology, 2021, 52(6): 894-906.
[13] 马志伟, 李豪杰, 樊鑫, 等. 真实场景水下语义分割方法及数据集[J]. 北京航空航天大学学报, 2022, 48(8): 1 515-1 524. MA Z W, LI H J, FAN X, et al. Underwater semantic segmentation method and dataset for real scenes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1 515-1 524.
[14] 张军锋, 尚展垒. 基于深度学习卷积神经网络的花生籽粒完整性检测[J]. 食品与机械, 2022, 38(5): 24-29, 36. ZHANG J F, SHANG Z L. Peanut kernel integrity detection based on deep learning convolutional neural network[J]. Food & Machinery, 2022, 38(5): 24-29, 36.
[15] 于秀娟, 郝向举, 杨霖坤, 等. 中国小龙虾产业发展报告(2023)[J]. 中国水产, 2023(7): 26-31. YU X J, HAO X J, YANG L K, et al. China crayfish industry development report (2023) [J]. Chinese Fisheries, 2023(7): 26-31.
[16] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. arXiv. (2017-12-05) [2024-03-19]. https://doi.org/10.48550/arXiv.1706.05587.
[17] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[18] 马冬梅, 李鹏辉, 黄欣悦, 等. 改进DeepLabV3+的高效语义分割[J]. 计算机工程与科学, 2022, 44(4): 737-745. MA D M, LI P H, HUANG X Y, et al. Improved efficient semantic segmentation of DeepLab V3+[J]. Computer Engineering and Science, 2022, 44(4): 737-745.
[19] 王淑青, 黄剑锋, 张鹏飞, 等. 基于YOLOv4神经网络的小龙虾质量检测方法[J]. 食品与机械, 2021, 37(3): 120-124, 194. WANG S Q, HUANG J F, ZHANG P F, et al. Crayfish quality detection method based on YOLOv4[J]. Food & Machinery, 2021, 37(3): 120-124, 194.
[20] 郑帅. 语义分割技术在船舶卫星图像识别中的应用[J]. 舰船科学技术, 2022, 44(14): 155-158. ZHENG S. Application of semantic segmentation technology in ship satellite image recognition[J]. Ship Science and Technology, 2022, 44(14): 155-158.
[21] 赵世达, 王树才, 李振强, 等. 基于U型卷积神经网络的羊肋排图像分割[J]. 食品与机械, 2020, 36(9): 116-121, 154. ZHAO S D, WANG S C, LI Z Q, et al. Image segmentation of sheep ribs based on U-shaped convolutional neural network[J]. Food & Machinery, 2020, 36(9): 116-121, 154.
[22] 马冬梅, 黄欣悦, 李煜. 基于特征融合和注意力机制的图像语义分割[J]. 计算机工程与科学, 2023, 45(3): 495-503. MA D M, HUANG X Y, LI Y. Image semantic segmentation based on feature fusion and attention mechanism[J].Computer Engineering and Science, 2023, 45(3): 495-503.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.