Abstract
Objective: In order to solve the phenomenon of low mechanical shelling efficiency and high kernel breakage rate of hazelnut, a vertical cone shell breaking machine was designed with automatic adjustment of clearance through compression spring. Methods: The key structure of the shell breaker was composed of three core components: the vertical cone inner roller, the slatted screen outer roller and the pressure spring device, and the stress of the hazelnuts in the shelling cavity of the shell breaker was analyzed. Results: The main parameters of the vertical cone hazelnut shell breaker were determined: the taper of the uniform cone was 30°, the inclination angle of the inner roller bus was 75°, the half cone angle was 15°, the surface groove was spiral, the groove depth was 3 mm, the inclination angle of the outer roller bus was 73°, the half cone angle was 17°, the free stroke of the compression spring design was 230 mm, the middle warp was 160 mm, the wire diameter was 24 mm, the effective number of turns was 6, the total number of turns was 8, and the effective speed range of the inner roller was 229.2~881.5 r/min. Conclusion: This design can automatically adjust the compression amount of the vertical cone shell breaker and adjust the shell breaking gap through the feeding amount, which can adapt to the fruit shape size of different hazelnuts, so that the hazelnut shelling efficiency and kernel preparation rate can be improved.
Publication Date
7-22-2024
First Page
88
Last Page
95
DOI
10.13652/j.spjx.1003.5788.2023.81290
Recommended Citation
Ting, HE; Ke, LIU; Rui, ZHANG; Guangyue, REN; and Zhaohan, LIU
(2024)
"Development of high efficiency hazelnut shell breaking machine,"
Food and Machinery: Vol. 40:
Iss.
5, Article 13.
DOI: 10.13652/j.spjx.1003.5788.2023.81290
Available at:
https://www.ifoodmm.cn/journal/vol40/iss5/13
References
[1] 赵棣, 胡献文, 魏珩, 等. 榛子全基因组CHSEP基因鉴定、多克隆抗体制备及其在胚珠中的表达研究[J]. 北京林业大学学报, 2023, 45(8): 123-131.
ZHAO D, HU X W, WEI H, et al. Identification of CHSEP genes in the whole genome of hazelnut, preparation of polyclonal antibody and expression in ovules[J]. Journal of Beijing Forestry University, 2023, 45(8): 123-131.
[2] 苏可欣, 赵玉红. 平欧榛子副产物不同溶剂提取物的生物活性评价及超高效液相色谱—质谱分析[J]. 食品科学, 2024, 45(1): 32-41.
SU K X, ZHAO Y H. Different solvent extracts from by-products of corylus heterophylla fisch. × Corylus avellana L.: Bioactivity evaluation and phenolic composition analysis by ultra-high performance liquid chromatography-mass spectrometry[J]. Food Science, 2024, 45(1): 32-41.
[3] 刘剑锋, 孙莹, 魏珩, 等. 榛子胚珠不同发育阶段circRNA的分析与鉴定[J]. 园艺学报, 2021, 48(6): 1 053-1 066.
LIU J F, SUN Y, WEI H, et al. Analysis and identification of circRNA of hazel ovule at different developmental stages[J]. Acta Horticulturac Sinica, 2021, 48(6): 1 053-1 066.
[4] 栗文, 张宏, 唐玉荣, 等. 薄皮核桃机械分级与破壳特征提取研究[J]. 食品与机械, 2017, 33(6): 89-92.
LI W, ZHANG H, TANG Y R, et al. Study on feature extraction of shell breaking and machine grading of thin shell walnut[J]. Food & Machinery, 2017, 33(6): 89-92.
[5] 王周梅, 王应彪, 张超宇, 等. 定向挤压试验下核桃单粒破壳装置的研究[J/OL]. 中国油脂. (2023-08-14) [2023-12-28]. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.230282.
WANG Z M, WANG Y B, ZHANG C Y, et al. Study on single walnut shell breaking device under directional extrusion test[J/OL]. China Oile and Fats. (2023-08-14) [2023-12-28]. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.230282.
[6] 刘明政, 李长河, 曹成茂, 等. 核桃分级破壳取仁及壳仁分离关键技术与装置研究进展[J]. 农业工程学报, 2020, 36(20): 294-310.
LIU Z M, LI C H, CAO C M, et al. Research progress of key technology and device for size-grading shell-breaking and shell-kernel separation of walnut[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 294-310.
[7] SHARIFIAN F, DERAFSHIM H. Mechanical behavior of walnut under cracking conditions[J]. Journal of Applied Sciences, 2008, 8(5): 886-890.
[8] KOCTURK B O, GURHAN R. Determination of mechanical properties of various walnut according to different moisture levels[J]. Journal of Agricultural Science, 2007, 13(1): 69-74.
[9] 闫茹, 高警, 郑甲红, 等. 基于Workbench的核桃破壳力学特性分析[J]. 农机化研究, 2014, 36(10): 38-41.
YAN R, GAO J, ZHENG J H, et al. Analysis of mechanical properties of walnut shell based on workbench[J]. Journal of Agricultural Mechanization Research, 2014, 36(10): 38-41.
[10] 王超, 郑甲红, 程国梁, 等. 基于Workbench核桃力学特性分析与试验研究[J]. 农机化研究, 2022, 44(5): 17-22, 36.
WANG C, ZHENG J H, CHENG G L, et al. Simulation and experimental research of walnut crack based on workbench[J]. Journal of Agricultural Mechanization Research, 2022, 44(5): 17-22, 36.
[11] ANCO D J, BALOTA M, DUNNE J C, et al. Sound splitsas influenced by seed size for runner and Virginia market type peanut shelled on a reciprocating sheller[J]. Agronomy, 2021, 11(9): 1 869.
[12] GUZMAN J D, PETINGCO M C, DOM-OGUEN A D P. Peanut threshing and shelling machines for community-based peanut enterprises in developing countries[C]// ASABE Annual International Meeting. Boston: American Society of Agricultural and Biological Engineers, 2019: 1-11.
[13] UNGUWANRIMI A Y, USMAN M S, ISHIAKA M, et al. Development and performance evaluation of a castor seed (Ricnuscommunis) shelling machine with a winnowing system[J]. FUOYE Journal of Engineering and Technology, 2020, 5(1): 430.
[14] SAHU G, YADAV M, GAJBHIYE A. Development and performance evaluation of a walnut sheller machine[J]. Journal of Pharmacognosy and Phytochemistry, 2018, SP1: 466-470.
[15] 王维, 王亚妮, 王佩, 等. 锥篮式核桃破壳机结构改进设计与试验[J]. 农机化研究, 2022, 44(3): 124-129.
WANG W, WANG Y N, WANG P, et al. Structure improvement design and test of cone basket walnut shelling[J]. Journal of Agricultural Mechanization Research, 2022, 44(3): 124-129.
[16] 曹成茂, 李正, 罗坤, 等. 山核桃二次破壳取仁机设计与试验[J]. 农业机械学报, 2019, 50(3): 128-135.
CAO C M, LI Z, LUO K, et al. Design and experiment of secondary shell breaking machine for pecan[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 128-135.
[17] 刘明国. 花生脱壳与损伤机理及立锥式脱壳机研究[D]. 沈阳: 沈阳农业大学, 2011: 77-80.
LIU M G. Study on peanut shelling damage mechanism and development of the vertical cone type shelling machine[D].Shenyang: Shenyang Agricultural University, 2011: 77-80.
[18] 曹成茂, 蒋兰, 吴崇友, 等. 山核桃破壳机加载锤头设计与试验[J]. 农业机械学报, 2017, 48(10): 307-315.
CAO C M, JIANG L, WU C Y, et al. Design and test on hammerhead of pecan shell-breaking machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 307-315.
[19] 石明村, 刘明政, 李长河, 等. 凸轮摇杆双向挤压核桃破壳装置设计与试验[J]. 农业机械学报, 2022, 53(1): 140-150.
SHI M C, LIU M Z, LI C H, et al. Design and experiment of cam rocker bidirectional extrusion walnut shell breaking device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 140-150.
[20] SUN Q, WANG C, WANG Z, et al. Design and experiment of a peanut shelling machine[J]. Agricultural Research, 2017, 6(3): 304-311.
[21] 任德志, 李佳奇, 聂影, 等. 气吸式榛子捡拾分选机设计与试验[J]. 沈阳农业大学学报, 2022, 53(2): 177-186.
REN D Z, LI J Q, NIE Y, et al. Design and experimental study on air-suction hazelnut picking and cleaning machine[J]. Journal of Shenyang Agricultural University, 2022, 53(2): 177-186.
[22] 李心平, 马福丽, 高连兴. 花生脱壳装置的结构技术剖析[J]. 农机化研究, 2010, 32(3): 18-20.
LI X P, MA F L, GAO L X. Analysis of construction and technique of shelling equipment on peanuts[J].Journal of Agricultural Mechanization Research, 2010, 32(3): 18-20.
[23] 徐国宝, 佘艳祥, 石卓栋, 等. 圆柱螺旋压缩弹簧的自动化设计[J]. 包装工程, 2015, 36(3): 74-79.
XU G B, SHE Y X, SHI Z D, et al. Automatic design of cylindrical helical compression spring[J]. Packaging Engineering, 2015, 36(3): 74-79.
[24] 丁冉, 曹成茂, 詹超, 等. 仿生敲击式山核桃破壳机的设计与试验[J]. 农业工程学报, 2017, 33(3): 257-264.
DING R, CAO C M, ZHAN C, et al. Design and experiment of bionic-impact type pecan shell breaker[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 257-264.
[25] 程国梁, 郑甲红, 王超. 二次挤压式核桃破壳机[J]. 食品与机械, 2022, 38(2): 64-67.
CHENG G L, ZHENG J H, WANG C. Secondary extrusion walnut shell breaker[J]. Food & Machinery, 2022, 38(2): 64-67.
[26] 蒋快乐, 陈治华, 李亚南, 等. 澳洲坚果脱皮机脱皮辊的力学特性仿真[J]. 食品与机械, 2021, 37(8): 110-114.
JIANG K L, CHEN Z H, LI Y N, et al. Simulation analysis on mechanical properties of macadamia nut peeler roll[J]. Food & Machinery, 2021, 37(8): 110-114.