Abstract
Objective: Portable near-infrared (NIR) spectroscopy and stoichiometric methods were used to predict the spoilage time of yellow peach. Methods: Diffuse reflectance spectra of yellow peach samples were collected using a portable NIR spectrometer. Spectral preprocessing techniques were employed to enhance data features, and partial least squares (PLS) regression was applied to establish a prediction model upon the spoilage time and NIR data of yellow peach. The model performance was evaluated by both root mean square error (RMSE) and coefficient of determination (R2). Results: An R2 value of 0.63 and RMSE of 4.09 days were achieved for the spoilage time prediction for yellow peach. Conclusion: NIR spectroscopy combined with chemometric methods can provide a non-destructive and accurate prediction of yellow peach spoilage time.
Publication Date
7-22-2024
First Page
101
Last Page
106,187
DOI
10.13652/j.spjx.1003.5788.2024.60057
Recommended Citation
Xu, ZHOU; Qianqian, YANG; Jin, ZHANG; and Boyan, LI
(2024)
"Rapid prediction of yellow peach spoilage time based on portable near infrared spectrometer,"
Food and Machinery: Vol. 40:
Iss.
5, Article 15.
DOI: 10.13652/j.spjx.1003.5788.2024.60057
Available at:
https://www.ifoodmm.cn/journal/vol40/iss5/15
References
[1] 武琳霞, 李玲, 习佳林, 等. 桃品质的无损检测技术研究进展[J]. 食品科学, 2022, 43(15): 367-377.
WU L X, LI L, XI J L, et al. Progress in nondestructive detection techniques for peach quality[J]. Food Science, 2022, 43(15): 367-377.
[2] 王力荣. 我国桃产业现状与发展建议[J]. 中国果树, 2021, 10(1): 1-5.
WANG L R. Current situation and development suggestions of peach industry in China[J]. China Fruits, 2021, 10(1): 1-5.
[3] 袁楚珊, 黄余年, 董欣瑞, 等. 不同贮藏温度对黄桃采后品质和抗氧化能力的影响[J]. 食品工业科技, 2023, 44(3): 356-364.
YUAN C S, HUANG Y N, DONG X R, et al. Effect of different storage temperatures on postharvest quality and antioxidant capacity of yellow-fleshed peach[J]. Science and Technology of Food Industry, 2023, 44(3): 356-364.
[4] 何馥娴, 蒙庆华, 唐柳, 等. 高光谱成像技术在水果品质检测中的研究进展[J]. 果树学报, 2021, 38(9): 1 590-1 599.
HE F X, MENG Q H, TANG L, et al. Research progress in hyperspectral imaging technology for fruit quality detection[J]. Journal of Fruit Science, 2021, 38(9): 1 590-1 599.
[5] 康明月, 王成, 孙鸿雁, 等. 基于改进的WOA-LSSVM樱桃番茄内部品质检测方法研究[J]. 光谱学与光谱分析, 2023, 43(11): 3 541-3 550.
KANG M Y, WANG C, SUN H Y, et al. Research on internal quality detection method of cherry tomatoes based on improved WOA-LSSVM[J]. Spectroscopy and Spectral Analysis, 2023, 43(11): 3 541-3 550.
[6] 张进, 叶世著, 吴艾璟, 等. 连续小波变换结合无参数模型增强框架对时序漂移的近红外光谱建模[J]. 分析化学, 2022, 50(9): 1 391-1 398.
ZHANG J, YE S Z, WU A J, et al. Continuous wavelet transform combined with parametric-free calibration enhancement framework for calibration of time-shift near-infrared spectra[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1 391-1 398.
[7] 孙晓荣, 郑冬钰, 刘翠玲, 等. 小麦粉品质在线无损快速检测系统设计与实现[J]. 食品与机械, 2022, 38(12): 87-91.
SUN X R, ZHENG D Y, LIU C L, et al. Design and implementation of online non-damage and rapid testing system for wheat flour quality[J]. Food & Machinery, 2021, 38(12): 87-91.
[8] 叶佳丽, 江海霞, 郭栋良, 等. 亚麻籽蛋白质、亚麻酸和木酚素含量近红外预测模型建立与应用[J]. 中国油料作物学报, 2021, 43(2): 353-360.
YE J L, JIANG H X, GUO D L, et al. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting protein, linolenic acid and lignan contents of flaxseed[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(2): 353-360.
[9] 吕都, 唐健波, 姜太玲, 等. 基于近红外光谱技术快速检测稻谷水分含量[J]. 食品与机械, 2022, 38(2): 51-56.
LU D, TANG J B, JIANG T L, et al. Research on rapid prediction model of rice moisture content based on near infrared spectroscopy[J]. Food & Machinery, 2022, 38(2): 51-56.
[10] 张鹏, 陈帅帅, 李江阔, 等. 采用近红外光谱进行采后苹果品种及货架期定性判别[J]. 食品与发酵工业, 2019, 45(19): 200-205.
ZHANG P, CHEN S S, LI J K, et al. Near-infrared spectroscopy for qualitative identification of postharvest apple varieties and shelf life[J]. Food and Fermentation Industries, 2019, 45(19): 200-205.
[11] 关晔晴, 王冬, 李楠, 等. 基于近红外技术无损检测深州蜜桃果实内部品质[J]. 现代食品科技, 2022, 38(10): 290-296.
GUAN Y Q, WANG D, LI N, et al. Near-infrared technology-based non-destructive detection of the internal quality of Shenzhou peaches[J]. Modern Food Science and Technology, 2022, 38(10): 290-296.
[12] SAAD A G, AZAM M M, AMER B M A. Quality analysis prediction and discriminating strawberry maturity with a hand-held Vis-NIR spectrometer[J]. Food Analytical Methods, 2022, 15: 689-699.
[13] 毛欣然, 夏静静, 徐惟馨, 等. 手持式近红外光谱仪测定梨三种品质指标通用模型建模方法研究[J]. 光谱学与光谱分析, 2024, 44(2): 406-412.
MAO X R, XIA J J, XU W X, et al. Study on modeling method of general model for measuring three quality indexes of pear by handheld near-infrared spectrometer[J]. Spectroscopy and Spectral Analysis, 2024, 44(2): 406-412.
[14] 张晨, 朱玉杰, 冯国红. 基于集成学习和近红外光谱的蓝莓贮藏品质检测方法研究[J]. 食品与发酵工业, 2023, 49(18): 306-314.
ZHANG C, ZHU Y J, FENG G H. Research on storage quality detection method of blueberry based on ensemble learning and near-infrared spectroscopy[J]. Food and Fermentation Industries, 2023, 49(18): 306-314.
[15] 彭彦昆, 孙晨, 刘乐, 等. 苹果外部缺陷全表面在线检测分选装置研发[J]. 农业工程学报, 2022, 38(23): 266-275.
PENG Y K, SUN C, LIU L, et al. Development of full-surface online detection and sorting device for external defects of apples[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(23): 266-275.
[16] LIU H, JIANG W B, CAO J K, et al. Effect of chilling temperatures on physiological properties, phenolic metabolism and antioxidant level accompanying pulp browning of peach during cold storage[J]. Scientia Horticulturae, 2019, 255: 175-182.
[17] YANG X Z, CHEN J H, JIA L W, et al. Rapid and non-destructive detection of compression damage of yellow peach using an electronic nose and chemometrics[J]. Sensors, 2020, 20(7): 1 866.
[18] 张进, 胡芸, 周罗雄, 等. 近红外光谱分析中的化学计量学算法研究新进展[J]. 分析测试学报, 2020, 39(10): 1 196-1 203.
ZHNAG J, HU Y, ZHOU L X, et al. Progress of chemometric algorithms in near-infrared spectroscopic analysis[J]. Journal of Instrumental Analysis, 2020, 39(10): 1 196-1 203.
[19] ZHANG J, ZHOU X, LI B Y. PFCE2: A versatile parameter-free calibration enhancement framework for near-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 301: 122978.