Abstract
Objective: Addressing the issues of poor accuracy and low efficiency in non-destructive testing methods for kiwifruit sugar content. Methods: Proposing a non-destructive testing method for kiwifruit sugar content that combined hyperspectral detection technology, least squares support vector machine, and improved whale algorithm. By collecting hyperspectral information of kiwifruit through a hyperspectral detection system, after preprocessing and feature wavelength screening, and then input into an improved whale algorithm optimized least squares support vector machine model to achieve rapid and non-destructive detection of kiwifruit sugar content, and verify its performance. Results: The proposed method could achieve rapid and non-destructive detection of kiwifruit sugar content, with a determination coefficient of 0.965 2 for the test set, a root mean square error of 0.880 5 for the test set, and an average detection time of 1.06 seconds. Conclusion: Combining machine learning algorithms with hyperspectral detection technology can achieve rapid and non-destructive detection of kiwifruit sugar content.
Publication Date
7-22-2024
First Page
107
Last Page
112,226
DOI
10.13652/j.spjx.1003.5788.2024.60010
Recommended Citation
Kai, ZHANG; Lifang, ZHU; Rulin, LI; and Ziyi, WANG
(2024)
"Non destructive detection of kiwifruit sugar content based on improved WOA-LSSVM and hyperspectral analysis,"
Food and Machinery: Vol. 40:
Iss.
5, Article 16.
DOI: 10.13652/j.spjx.1003.5788.2024.60010
Available at:
https://www.ifoodmm.cn/journal/vol40/iss5/16
References
[1] 胡静, 黄金发, 刘小丹, 等. 基于近红外光谱技术的猕猴桃品质检测研究进展[J]. 食品研究与开发, 2022, 43(2): 196-201.
HU J, HANG J F, LIU X D, et al. Research progress on kiwifruit quality detection based on near-infrared spectroscopy technology[J]. Food Research and Development, 2022, 43(2): 196-201.
[2] 殷坤, 刘金明, 张东杰, 等. 基于近红外光谱的大米蛋白质含量快速检测[J]. 食品与机械, 2021, 37(5): 82-88, 175.
YIN K, LIN J M, ZHANG D J, et al. Rapid detection of rice protein content based on near-infrared spectroscopy[J]. Food & Machinery, 2021, 37(5): 82-88, 175.
[3] 王朝辉, 赵层, 赵倩, 等. 基于高光谱成像的大米中蛋白质含量的可视化研究[J]. 食品研究与开发, 2020, 41(6): 124-129.
WANG C H, ZHAO C, ZHAO Q, et al. Visualization of protein content in rice based on hyperspectral imaging[J]. Food Research and Development, 2020, 41(6): 124-129.
[4] 刘美辰, 薛河儒, 刘江平, 等. 牛奶蛋白质含量的SSA-SVM高光谱预测模型[J]. 光谱学与光谱分析, 2022, 42(5): 1 601-1 606.
LIU M C, XUE H R, LIU J P, et al. SSA-SVM hyperspectral prediction model for milk protein content[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1 601-1 606.
[5] 黄蕾, 韦紫玉. 基于近红外光谱分析技术的大米水分含量快速检测研究[J]. 农产品加工, 2022(13): 70-73.
HUANG L, WEI Z Y. Research on rapid detection of rice moisture content based on near-infrared spectroscopy analysis technology[J]. Agricultural Product Processing, 2022(13): 70-73.
[6] 孟庆龙, 尚静, 黄人帅, 等. 基于主成分回归的猕猴桃可溶性固形物无损检测[J]. 包装工程, 2021, 42(3): 19-24.
MENG Q L, SHANG J, HUANG R S, et al. Non destructive detection of soluble solids in kiwifruit based onprincipal component regression[J]. Packaging Engineering, 2021, 42(3): 19-24.
[7] 许丽佳, 陈铭, 王玉超, 等. 高光谱成像的猕猴桃糖度无损检测方法[J]. 光谱学与光谱分析, 2021, 41(7): 2 188-2 195.
XU L J, CHEN M, WANG Y C, et al. Non destructive testing method for kiwifruit sugar content using hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2 188-2 195.
[8] 尚静, 黄人帅, 张艳, 等. 高光谱成像结合模式识别无损检测猕猴桃成熟度[J]. 中国农机化学报, 2022, 43(8): 90-95.
SHANG J, HUANG R S, ZHANG Y, et al. High spectral imaging combined with pattern recognition for non-destructive testing of kiwifruit ripeness[J]. China Journal of Agricultural Machinery Chemistry, 2022, 43(8): 90-95.
[9] 尚静, 孟庆龙, 黄人帅, 等. 光纤光谱技术对猕猴桃品质及成熟度的无损检测[J]. 光学精密工程, 2021, 29(5): 1 190-1 198.
SHANG J, MENG Q L, HUANG R S, et al. Non destructive testing of kiwifruit quality and maturity using fiber optic spectroscopy technology[J]. Optical Precision Engineering, 2021, 29(5): 1 190-1 198.
[10] 姜凤利, 杨磊, 田有文, 等. 基于高光谱成像的软枣猕猴桃SSC检测研究[J]. 沈阳农业大学学报, 2023, 54(3): 318-326.
JIANG F L, YANG L, TIAN Y W, et al. Research on SSC detection of soft jujube kiwifruit based on hyperspectral imaging[J]. Journal of Shenyang Agricultural University, 2023, 54(3): 318-326.
[11] 林家豪, 张元泽, 梁千月, 等. 基于视触觉与深度学习的猕猴桃无损硬度检测方法[J]. 农业机械学报, 2023, 54(10): 390-398.
LIN J H, ZHANG Y Z, LIANG Q Y, et al. A non-destructive hardness testing method for kiwifruit based on visual touch and deep learning[J]. Journal of Agricultural Machinery, 2023, 54(10): 390-398.
[12] 周雨帆, 李胜旺, 杨奎河, 等. 基于轻量级卷积神经网络的苹果表面缺陷检测方法[J]. 河北工业科技, 2021, 38(5): 388-394.
ZHOU Y F, LI S W, YANG K H, et al. Apple surface defect detection method based on lightweight convolutional neural network[J]. Hebei Industrial Technology, 2021, 38(5): 388-394.
[13] 马冬菁, 刘怡菲, 王宇, 等. 丹东地区4种软枣猕猴桃果实中多糖特性研究[J]. 辽宁林业科技, 2020(1): 11-13, 45.
MA D J, LIU Y F, WANG Y, et al. A study on the polysaccharide characteristics of four kinds of soft date kiwifruit fruits in Dandong region[J]. Liaoning Forestry Technology, 2020(1): 11-13, 45.
[14] 孙兴盛, 顾思彤, 蒋海峰, 等. 软枣猕猴桃后熟过程中生理及品质变化规律[J]. 包装工程, 2021, 42(5): 45-54.
SUN X S, GU S T, JIANG H F, et al. Physiological and quality changes during the ripening process of kiwifruit with soft dates[J]. Packaging Engineering, 2021, 42(5): 45-54.
[15] 王立扬, 张瑜, 沈群, 等. 基于改进型LeNet-5的苹果自动分级方法[J]. 中国农机化学报, 2020, 41(7): 105-110.
WANG L Y, ZHANG Y, SHEN Q, et al. Automatic apple classification method based on improved LeNet-5[J]. Chinese Journal of Agricultural Mechanochemistry, 2020, 41(7): 105-110.
[16] 范传会, 黄文俊, 钟彩虹, 等. 猕猴桃品种对猕猴桃脆片品质影响的评价[J]. 食品与机械, 2022, 38(12): 21-27.
FAN C H, HUANG W J, ZHONG C H, et al. Evaluation of the impact of kiwifruit varieties on the quality of kiwifruit chips[J]. Food & Machinery, 2022, 38 (12): 21-27.
[17] 索婷, 杨书林, 林娜, 等. 小麦粉特性与生湿面品质的关系研究[J]. 食品与生物技术学报, 2024, 43(3): 54-65.
SUO T, YANG S L, LIN N, et al. A study on the relationship between wheat flour characteristics and wet noodle quality[J]. Journal of Food Science and Biotechnology, 2024, 43(3): 54-65.
[18] 田淮锐, 田建艳, 王素钢, 等. 基于机器视觉的机器人自动酒醅出缸策略[J]. 食品与机械, 2024, 40(3): 110-119.
TIAN H R, TIAN J Y, WANG S G, et al. Robot's automatic strategy for fermented grains scooping based on machine vision[J]. Food & Machinery, 2024, 40(3): 110-119.
[19] 杨志锐, 郑宏, 郭中原, 等. 基于网中网卷积神经网络的红枣缺陷检测[J]. 食品与机械, 2020, 36(2): 140-145, 181.
YANG Z R, ZHENG H, GUO Z Y, et al. Defect detection of jujube based on convolutional neural network of net in net[J]. Food & Machinery, 2020, 36(2): 140-145, 181.
[20] YANG J, LIU S, MENG Y, et al. Self-powered tactile sensor for gesture recognition using deep learning algorithms[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25 629-25 637.