Abstract
Objective: To address the issues of low accuracy and poor efficiency in walnut defect detection among existing food production enterprises. Methods: Proposed a fast non-destructive detection method for walnut defects that combined improved extreme learning machines and computer vision. Collected most of the surface image information of walnuts through computer vision, preprocess the image through Gaussian filtering, optimize color and texture features through iterative and information preserving variable methods, finally, by improving the butterfly algorithm to optimize the parameters of the Extreme Learning Machine (random weights and deviations), fast non-destructive detection of walnut defects could be achieved, and verify the performance of the proposed defect detection method. Results: The experimental method could effectively discriminate various defects in walnuts. Compared with conventional methods, the experimental method had superior detection accuracy and efficiency in walnut defect detection, with a detection accuracy rate > 98.00% and an average detection time < 9.00 ms. Conclusion: Combining intelligent algorithms with machine vision technology can achieve rapid non-destructive detection of walnut defects.
Publication Date
7-22-2024
First Page
122
Last Page
127
DOI
10.13652/j.spjx.1003.5788.2023.60161
Recommended Citation
Jie, XU and Chang, LIU
(2024)
"Walnut defect detection based on improved ELM and computer vision,"
Food and Machinery: Vol. 40:
Iss.
5, Article 18.
DOI: 10.13652/j.spjx.1003.5788.2023.60161
Available at:
https://www.ifoodmm.cn/journal/vol40/iss5/18
References
[1] 张铮, 熊盛辉, 王孙强, 等. 基于机器视觉的香蕉果肉缺陷预测方法[J]. 食品与机械, 2020, 36(7): 150-154.
ZHANG Z, XIONG S H, WANG S Q, et al. Prediction method of banana pulp defects based on machine vision[J]. Food & Machinery, 2020, 36(7): 150-154.
[2] 范传会, 黄文俊, 钟彩虹, 等. 猕猴桃品种对猕猴桃脆片品质影响的评价[J]. 食品与机械, 2022, 38(12): 21-27.
FAN C H, HUANG W J, ZHONG C H, et al. Evaluation of the impact of kiwifruit varieties on the quality of kiwifruit chips[J]. Food & Machinery, 2022, 38(12): 21-27.
[3] 刘美辰, 薛河儒, 刘江平, 等. 牛奶蛋白质含量的SSA-SVM 高光谱预测模型[J]. 光谱学与光谱分析, 2022, 42(5): 1 601-1 606.
LIU M C, XUE H R, LIU J P, et al. SSA-SVM hyperspectral prediction model for milk protein content[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1 601-1 606.
[4] 黄蕾, 韦紫玉. 基于近红外光谱分析技术的大米水分含量快速检测研究[J]. 农产品加工, 2022(7): 70-73.
HUANG L, WEI Z Y. Research on rapid detection of rice moisture content based on near-infrared spectroscopy analysis technology[J]. Agricultural Product Processing, 2022(7): 70-73.
[5] 殷坤, 刘金明, 张东杰, 等. 基于近红外光谱的大米蛋白质含量快速检测[J]. 食品与机械, 2021, 37(5): 82-88, 175.
YIN K, LIN J M, ZHANG D J, et al. Rapid detection of rice protein content based on near-infrared spectroscopy[J]. Food & Machinery, 2021, 37(5): 82-88, 175.
[6] 王朝辉, 赵层, 赵倩, 等. 基于高光谱成像的大米中蛋白质含量的可视化研究[J]. 食品研究与开发, 2020, 41(6): 124-129.
WANG C H, ZHAO C, ZHAO Q, et al. Visualization of protein content in rice based on hyperspectral imaging[J]. Food Research and Development, 2020, 41(6): 124-129.
[7] 王阳, 丁召, 唐泽恬, 等. 基于机器视觉的麻核桃分类算法设计[J]. 科学技术与工程, 2020, 20(8): 3 122-3 127.
WANG Y, DING Z, TANG Z T, et al. Design of juglans hopeiensis Hu classification algorithm[J]. Science Technology and Engineering, 2020, 20(8): 3 122-3 127.
[8] 余思黔, 赵麒荣, 林嘉晨, 等. 基于深度学习的核桃外壳缺陷检测[J]. 吉林化工学院学报, 2022, 39(9): 80-85.
YU S Q, ZHAO Q R, LIN J C, et al. Detection of walnut shell defects based on deep learning[J]. Journal of Jilin University of Chemical Technology, 2022, 39(9): 80-85.
[9] 李成吉, 张淑娟, 孙海霞, 等. 基于计算机视觉的核桃外观缺陷检测[J]. 现代食品科技, 2019, 35(8): 247-253, 246.
LI C J, ZHANG S J, SUN H X, et al. Detection of walnut appearance defects based on computer vision[J]. Modern Food Technology, 2019, 35(8): 247-253, 246.
[10] 李波, 徐炳潮, 罗煦钦, 等. 基于 XGBoost 的山核桃干腐病多分类预测模型研究[J]. 南方农机, 2023, 24(24): 6-9.
LI B, XU B C, LUO X Q, et al. A multi classification prediction model for walnut dry rot disease based on XGBoost[J]. Southern Agricultural Machinery, 2023, 24(24): 6-9.
[11] 孙俊, 靳海涛, 芦兵, 等. 基于高光谱图像及深度特征的大米蛋白质含量预测模型[J]. 农业工程学报, 2019, 35(15): 295-303.
SUN J, JIN H T, LU B, et al. A prediction model for rice protein content based on hyperspectral images and depth features[J] Journal of Agricultural Engineering, 2019, 35(15): 295-303.
[12] 李琴, 朱家明, 郎红, 等. 基于带 RBF核的 SVM 模型对红酒品质的精准分类[J]. 湖北大学学报(自然科学版), 2021, 43(4): 417-422.
LI Q, ZHU J M, LANG H, et al. Accurate classification of red wine quality based on SVM model with RBF kernel[J]. Journal of Hubei University (Natural Science Edition), 2021, 43(4): 417-422.
[13] 胡鹏伟, 刘江平, 薛河儒, 等. BP神经网络结合变量选择方法在牛奶蛋白质含量检测中的应用[J]. 光电子·激光, 2022, 33(1): 23-29.
HU P W, LIU J P, XUE H R, et al. The application of BP neural network combined with variable selection method in the detection of milk protein content[J]. Journal of Optoelectronics Laser, 2022, 33(1): 23-29.
[14] 刘云, 杨建滨, 王传旭. 基于卷积神经网络的苹果缺陷检测算法[J]. 电子测量技术, 2017, 40(3): 108-112.
LIU Y, YANG J B, WANG C X. Apple defect detection algorithm based on convolutional neural network[J]. Electronic Measurement Technology, 2017, 40(3): 108-112.
[15] 周雨帆, 李胜旺, 杨奎河, 等. 基于轻量级卷积神经网络的苹果表面缺陷检测方法[J]. 河北工业科技, 2021, 38(5): 388-394.
ZHOU Y F, LI S W, YANG K H, et al. Apple surface defect detection method based on lightweight convolutional neural network[J]. Hebei Journal of Industrial Science and Technology, 2021, 38(5): 388-394.
[16] 索婷, 杨书林, 林娜, 等. 小麦粉特性与生湿面品质的关系研究[J]. 食品与生物技术学报, 2024, 43(3): 54-65.
SUO T, YANG S L, LIN N, et al. A study on the relationship between wheat flour characteristics and wet noodle quality[J]. Journal of Food Science and Biotechnology, 2024, 43(3): 54-65.
[17] 田淮锐, 田建艳, 王素钢, 等. 基于机器视觉的机器人自动酒醅出缸策略[J]. 食品与机械, 2024, 40(3): 110-119.
TIAN H R, TIAN J Y, WANG S G, et al. Machine vision based robot automatic wine mash unloading strategy[J]. Food & Machinery, 2024, 40(3): 110-119.
[18] 王立扬, 张瑜, 沈群, 等. 基于改进型LeNet-5的苹果自动分级方法[J]. 中国农机化学报, 2020, 41(7): 105-110.
WANG L Y, ZHANG Y, SHEN Q, et al. Automatic apple classification method based on improved LeNet-5[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 105-110.
[19] 肖仕杰, 王巧华, 李春芳, 等. 傅里叶变换中红外光谱的牛奶品质无损检测分级[J]. 光谱学与光谱分析, 2022, 42(4): 1 243-1 249.
XIAO S J, WANG Q H, LI C F, et al. Non destructive testing and grading of milk quality using Fourier transform mid infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42 (4): 1 243-1 249.
[20] 吴静珠, 李晓琪, 林珑, 等. 基于AlexNet卷积神经网络的大米产地高光谱快速判别[J]. 中国食品学报, 2022, 22(1): 282-288.
WU J Z, LI X Q, LIN L, et al. Rapid hyperspectral discrimination of rice production areas based on AlexNet convolutional neural network[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1): 282-288.