•  
  •  
 

Corresponding Author(s)

陈亮(1983—),男,贵州中医药大学讲师,博士。E-mail:chenliang8302@126.com

Abstract

Objective: This study aimed to establish a hollow fiber ligand fishing method for screening γ- Aminobutyrate transaminase (GABA-T) inhibitory component from the volatile oil of Acorus tatarinowii. Methods: Based on optimizing the enzyme assisted extraction process of volatile oil from A. tatarinowii using response surface methodology, GABA-T solution was injected into the hollow fiber lumen and used as a "bait" to fish out the potential active components in A. tatarinowii volatile oil, and its GABA-T inhibitory activity was verified. Results: The results showed that the optimum extraction conditions of volatile oil from A. tatarinowii were as follows: cellulase content 3 165 U/g, enzymolysis time 1.8 h, enzymolysis temperature 45 ℃, and the yield of volatile oil from A. tatarinowii was 2.56%. Finally, 51 compounds were identified, mainly including olefins, alcohols, ethers, ketones, phenols, acids, and other compounds. 3 mg/mL of GABA-T solution was injected into the cavity of the U-shaped hollow fiber tube, incubated for 160 min, sealed, and placed in the volatile oil of A. tatarinowii for ultrasonic (60 kHz) fishing for 20 min, and then analyzed with LCMS-IT-TOF system. Successfully filtered out α-Asarone has a concentration-dependent inhibitory effect on GABA-T activity, with an IC50 of 57.9 μg/mL. Conclusion: The established hollow fiber ligand fishing method is stable, feasible, and easy to operate.

Publication Date

7-22-2024

First Page

146

Last Page

153

DOI

10.13652/j.spjx.1003.5788.2023.80845

References

[1] 杨鹤年, 吴宿慧, 李寒冰, 等. 石菖蒲的研究进展及质量标志物预测分析[J]. 中国新药杂志, 2021, 30(13): 1 213-1 219. YANG H N, WU S H, LI H B, et al. Research progress of calamus and prediction analysis of quality markers[J]. Chinese Journal of New Drugs, 2021, 30(13): 1 213-1 219.
[2] 刘宁, 李鹏辉, 龚年春, 等. 野生石菖蒲药材多指标综合质量评价研究[J]. 湖南中医杂志, 2021, 37(7): 157-159. LIU N, LI P H, GONG N C, et al. Multi-index comprehensive quality assessment of wild medicinal material Acorus tatarinowii[J]. Hunan Journal of Traditional Chinese Medicine, 2021, 37(7): 157-159.
[3] 江威, 李强, 唐洁, 等. 中药材对清香型白酒主要酿造微生物及风味物质的影响[J]. 中国酿造, 2023, 42(2): 89-94. JIANG W, LI Q, TANG J, et al. Effects of Chinese medicinal materials on main brewing microorganisms and flavor components of light-flavor Baijiu[J]. China Brewing, 2023, 42(2): 89-94.
[4] 杨梦琳, 张运辉, 伍大华. 淫羊藿和石菖蒲及其有效成分防治阿尔茨海默病研究进展[J]. 中国中医药现代远程教育, 2019, 17(15): 129-132. YANG M L, ZHAGN Y H, WU D H. Research progress on Epimedium and Acorus tatarinowii Schott in the prevention and treatment of Alzheimer's disease and its active constituents[J]. Chinese Medicine Modern Distance Education of China, 2019, 17(15): 129-132.
[5] 陈灼, 王豆, 李涛, 等. 石菖蒲抗癫痫的药理机制研究进展[J]. 中国实验方剂学杂志, 2022, 28(18): 261-268. CHEN Z, WANG D, LI T, et al. Antiepileptic pharmacological mechanism of Acori tatarinowii Rhizoma: A review[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(18): 261-268.
[6] 权洪峰, 杨婷, 彭晓东. 回药石菖蒲挥发油神经保护活性初步研究[J]. 系统医学, 2017, 2(15): 127-129, 132. QUAN H F, YANG T, PENG X D. Initial research on neuroprotective activity of Hui medicine Rhizoma Acori Graminei volatile oil[J]. Systems Medicine, 2017, 2(15): 127-129, 132.
[7] 程宝仓, 夏昱, 杨会杰, 等. 石菖蒲挥发油对帕金森病模型小鼠黑质多巴胺能神经元自噬的影响及其机制[J]. 卒中与神经疾病, 2022, 29(2): 101-105, 137. CHENG B C, XIA Y, YANG H J, et al. Mechanisms of acorus calamus volatile oil on autophagy of substantia nigra dopaminergic neurons in Parkin-son's disease model mice[J]. Stroke and Nervours Diseases, 2022, 29(2): 101-105, 137.
[8] VOGEL K R, AINSLIE G R, WALTERS D C, et al. Succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism: An update on pharmacological and enzyme-replacement therapeutic strategies[J]. Journal of Inherited Metabolic Disease, 2018, 41(10): 1-10.
[9] KOURDOUGLI N, PELLEGRINO C, RENKO J M, et al. Depolarizing GABA contributes to glutamatergic network rewiring in epilepsy[J]. Annals of Neurology, 2017, 81(2): 251-265.
[10] 黄秋颜, 李斌, 林晓蓉, 等. 基于高分辨质谱和网络药理学的可可茶多酚降血糖活性研究[J]. 食品与机械, 2023, 39(9): 4-11. HUANG Q Y, LI B, LIN X R, et al. Studying on the hypoglycemic activity of green tea polyphenols from Camellia ptilophylla Chang using high-resolution mass spectrometry and network pharmacology[J]. Food & Machinery, 2023, 39(9): 4-11.
[11] NAZARIPOUR A, YAMINI Y, BAGHERI H. Extraction and determination of trace amounts of three anticancer pharmaceuticals in urine by three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents followed by HPLC[J]. Journal of Separation Science, 2018, 15(41): 3 113-3 120.
[12] WANG P, XIAO Y, LIU W J, et al. Vortex-assisted hollowfibre liquid-phase microextraction technique combined with high performance liquid chromatography-diode array detection for the determination of oestrogens in milk samples[J]. Food Chemistry, 2015, 172: 385-390.
[13] WANG C, HU S, CHEN X, et al. Screening and quantification of anticancer compounds in traditional Chinese medicine by hollow fiber cell fishing and hollow fiber liquid/solid-phase microextraction[J]. Journal of Separation Science, 2016, 39(10): 1 814-1 824.
[14] XUE X, LI L H, CHEN X, et al. Hollow fiber cell fishing with high performance liquid chromatography for screening bioactive compounds from traditional Chinese medicines[J]. Journal of Chromatography A, 2013, 1 280: 75-83.
[15] TAO Y, ZHANG Y F, WANG Y, et al. Hollow fiber based affinity selection combined with high performance liquid chromatography-mass spectroscopy for rapid screening lipase inhibitors from lotus leaf[J]. Analytica Chimica Acta, 2013, 785: 75-81.
[16] OLASUPO A, MOHD SUAH F B. Trends in hollow fibre liquid phase microextraction for the preconcentration of pharmaceutically active compounds in aqueous solution: A case for polymer inclusion membrane[J]. Journal of Hazardous Materials, 2022, 431: 128573.
[17] CHEN L, WANG X, LIU Y P, et al. Dual-target screening of bioactive components from traditional Chinese medicines by hollow fiber-based ligand fishing combined with liquid chromatography-mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 143: 269-276.
[18] LI F, SONG Y, WU J, et al. Hollow fibre cell fishing and hollow fibre liquid phase microextraction research on the anticancer coumarins of Radix Angelicae dahuricae in vitro and in vivo[J]. Journal of Liquid Chromatography & Related Technologies, 2019, 42: 79-88.
[19] 刘杰, 郭江涛, 刘耀, 等. 大果木姜子挥发油的提取工艺优化、成分分析及抗氧化活性[J]. 食品工业科技, 2022, 43(19): 211-219. LIU J, GUO J T, LIU Y, et al. Extraction optimization, composition analysis of volatile oil from Litsea lancilimba Merr. and its antioxidant activity[J]. Science and Technology of Food Industry, 2022, 43(19): 211-219.
[20] 赖利平, 罗露, 李玲惠, 等. 湘产石菖蒲不同部位挥发性成分的GC-MS分析[J]. 中医药导报, 2022, 28(10): 33-36. LAI L P, LUO L, LI L H, et al. Analysis of volatile components in different parts of Shichangpu (Acorus tatarinowii Schott) from Hunan Province by GC-MS[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2022, 28(10): 33-36.
[21] 李碧, 方雄, 龚晏, 等. γ-氨基丁酸转氨酶抑制剂筛选方法的建立及其在天麻成分筛选中的应用[J]. 中草药, 2016, 47(3): 454-458. LI B, FANG X, GONG Y, et al. Establishment of screening method for γ-aminobutyric acid transaminase inhibitor and its application in screening constituents in Gastrodiae Rhizoma[J]. Chinese Traditional and Herbal Drugs, 2016, 47(3): 454-458.
[22] 杨申明, 宁娜, 杨潇, 等. 响应面法优化七叶莲多酚提取工艺及抗氧化性研究[J]. 北方园艺, 2022(18): 90-98. YANG S M, NING N, YANG X, et al. Optimization of polyphenols extraction from Schefflera arboricola Hayata by response surface methodology and its antioxidant activity[J]. Northern Horticulture, 2022(18): 90-98.
[23] 曲迪, 薛傲, 赵晨宇, 等. 基于GC-MS技术结合网络药理学探究石菖蒲挥发油抗阿尔兹海默症的作用机制[J]. 中国药事, 2023, 37(10): 1 129-1 139. QU D, XUE A, ZHAO C Y, et al. Exploring the mechanism of the effect of volatile oil of Acorus tatarinowii on anti-Alzheimer's disease based on GC-MS combined with network pharmacology[J].Chinese Pharmaceutical Affairs, 2023, 37(10): 1 129-1 139.
[24] 钱一帆, 朱韵韵, 姬珊珊, 等. 石菖蒲挥发油超临界CO2萃取及胶体磨法包合工艺的研究[J]. 药学服务与研究, 2016, 16(2): 121-125. QIAN Y F, ZHU Y Y, JI S S, et al. Supercritical CO2 fluid extraction and colloid mill inclusion methodology of essential oil from Acorus tatarinowii Schot[J]. Pharmaceutical Care and Research, 2016, 16(2): 121-125.
[25] 唐一梅, 张博, 房海娜, 等. 离子液体辅助提取石菖蒲挥发油的工艺研究[J]. 西北大学学报(自然科学版), 2018, 48(3): 393-398. TANG Y M, ZHAGN B, FANG H N, et al. Study of ionic liquids-assisted extraction process of Acorus tatarinowii Schott. volatile oil[J]. Journal of Northwest University (Natural Science Edition), 2018, 48(3): 393-398.
[26] 罗球珠, 杨棣华, 巫资粦, 等. 石菖蒲挥发油成分的气相色谱—质谱分析[J]. 中国药物经济学, 2021, 16(8): 116-120. LUO Q Z, YANG D H, WU Z L, et al. Analysis of the constituents of volatile oil in Rhizoma Acorus tatarinowii by using GC-MS[J]. China Journal of Pharmaceutical Economics, 2021, 16(8): 116-120.
[27] 张莉, 纪娟, 刘艺, 等. 不同方法提取石菖蒲挥发油气质联用成分分析[J]. 辽宁中医药大学学报, 2016, 18(1): 53-55. ZHANG L, JI J, LIU Y, et al. GC-MS analysis the constituents of volatile oils from Acorus tatarinowii Schott extracted by different methods[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2016, 18(1): 53-55.
[28] 韩沅沅, 方洪, 谷丽华, 等. 基于网络药理学石菖蒲挥发油干预中枢神经系统疾病共性物质基础和作用机制探讨[J]. 上海中医药大学学报, 2022, 36(3): 52-60, 88. HAN Y Y, FANG H, GU L H, et al. Exploring common material basis and mechanism of volatile oil from Acori tatarinowii Rhizoma in intervening central nervous system diseases based on network pharmacology[J]. Academic Journal of Shanghai University of Traditional Chinese Medicine, 2022, 36(3): 52-60, 88.
[29] 侯宇, 郑娇, 屠鹏飞, 等. 基于中空纤维吸附靶酶的流体灌注系统用于苦丁茶总皂苷活性成分筛选[J]. 药学学报, 2020, 55(3): 495-500. HOU Y, ZHENG J, TU P F, et al. Perfusion enzyme affinity selection system based on hollow fiber for screening active compounds from total saponins of Kudingcha[J]. Acta Pharmaceutica Sinica, 2020, 55(3): 495-500.
[30] 苗静琨, 陈启雄, 吴小玫, 等. 石菖蒲α-细辛醚对Lithium-Pilocarpine癫痫模型GABA系统的调控作用[J]. 中国药理学通报, 2011, 27(8): 1 067-1 071. MIAO J K, CHEN Q X, WU X M, et al. Effect of alpha-asarone on regulation of GABA system in the Lithium-Pilocarpine model of epilepsy[J]. Chinese Pharmacological Bulletin, 2011, 27(8): 1 067-1 071.
[31] 邢倩倩, 刘振民, 洪青, 等. 气相色谱—质谱联用技术在食品分析方面的应用进展[J]. 食品与机械, 2023, 39(6): 234-240. XING Q Q, LIU Z M, HONG Q, et al. Application progress of gaschromatography-mass spectrometry in food analysis[J]. Food & Machinery, 2023, 39(6): 234-240.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.