•  
  •  
 

Corresponding Author(s)

李培骏(1978—),男,韶关学院副教授,博士。E-mail: peijunli@sgu.edu.cn苏东林(1979—),男,湖南省农产品加工研究所研究员,博士。E-mail: sdl791228@163.com

Abstract

Due to antimicrobial activity, nanoparticles (NPs) in combination with antimicrobial peptides (AMPs) can be used to kill drug-resistant (MDR) pathogens. Nanosilver (AgNPs) has broad-spectrum and efficient antimicrobial properties, multiple bacterial inactivation mechanisms, and the ability to fine-tune the conjugation on the surface of antimicrobial peptide-conjugated silver nanoparticles (AMP-AgNPs), which results in higher biosafety of AMP-AgNPs. The review summarized the latest research progress of AMP-AgNPs conjugates and discussed the synthesis method, antibacterial activity, mechanism of action, hemolytic toxicity of AMP-AgNPs conjugates, as well as their applications in medical and food fields. The future development direction of AMP-AgNPs conjugates was also prospected.

Publication Date

7-22-2024

First Page

219

Last Page

226

DOI

10.13652/j.spjx.1003.5788.2024.60033

References

[1] YU Y, SHEN M, SONG Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review[J]. Carbohydrate Polymers, 2018, 183: 91-101.
[2] WANG Y, YANG Y, SHI Y, et al. Antibiotic-free antibacterial strategies enabled bynanomaterials: Progress and perspectives[J]. Advanced Materials, 2020, 32(18): 1904106.
[3] CARRAPICO A, MARTINS M R, CALDEIRA A T, et al. Biosynthesis of metal and metal oxide nanoparticles using microbial cultures: Mechanisms, antimicrobial activity and applications to cultural heritage[J]. Microorganisms, 2023, 11(2): 378.
[4] 陈巧玲, 陈碧桑, 吴秀婷, 等. 蛋壳粉纳米银抗菌材料的制备及抑菌性研究[J]. 食品与机械, 2018, 34(8): 105-109. CHEN Q L, CHEN B S, WU X T, et al. Preparation of eggshell-powder nanosilver and its antibacterial properties[J]. Food & Machinery, 2018, 34(8): 105-109.
[5] RAI M K, DESHMUKH S D, INGLE A P, et al. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria[J]. Journal of Applied Microbiology, 2012, 112(5): 841-852.
[6] ROY A, BULUT O, SOME S, et al. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity[J]. RSC Advances, 2019, 9(5): 2 673-2 702.
[7] AKHAVAN O, GHADERI E. Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts[J]. Surface and Coatings Technology, 2010, 205(1): 219-223.
[8] ZHANG Y, SHAREENA D T P, DENG H, et al. Antimicrobial activity of gold nanoparticles and ionic gold[J]. Journal of Environmental Science and Health, Part C, 2015, 33(3): 286-327.
[9] HAGEMANN C L, MACEDO A J, TASCA T. Therapeutic potential of antimicrobial peptides against pathogenic protozoa[J]. Parasitology Research, 2024, 123(2): 122.
[10] 张书会, 罗璐, 孙雪言, 等. 虎奶菇菌丝体抗菌肽提取工艺优化及活性研究[J]. 食品与机械, 2022, 38(8): 158-165. ZHANG S H, LUO L, SUN X Y, et al. Optimization of extraction process and activity study of antimicrobial peptides from Pleurotus tuber-regium mycelium[J]. Food & Machinery, 2022, 38(8): 158-165.
[11] SHANG L, CHEN C, SUN R, et al. Engineered peptides harboringcation motifs against multidrug-resistant bacteria[J]. ACS Applied Materials & Interfaces, 2024, 16(5): 5 522-5 535.
[12] NGUYEN L T, HANEY E F, VOGEL H J. The expanding scope of antimicrobial peptide structures and their modes of action[J]. Trends in Biotechnology, 2011, 29(9): 464-472.
[13] PATRULEA V, BORCHARD G, JORDAN O. An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections[J]. Pharmaceutics, 2020, 12(9): 840.
[14] MOTTA G, GUALTIERI M, SAIBENE M, et al. Preliminary toxicological analysis in a safe-by-design and adverse outcome pathway-driven approach on different silver nanoparticles: Assessment of acute responses in A549 cells[J]. Toxics, 2023, 11(2): 195.
[15] IORI V, MUZZINI V G, VENDITTI I, et al. Phytotoxic impact ofbifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO3) on chronically exposed callus cultures of Populus nigra L[J]. Environmental Science and Pollution Research, 2023, 30(54): 116 175-116 185.
[16] KRISHNA R H, CHANDRAPRABHA M N, MONIKA P, et al. Biomolecule conjugated inorganic nanoparticles for biomedical applications: A review[J]. Biotechnology and Genetic Engineering Reviews, 2022, 24: 1-42.
[17] ARAKHA M, BORAH S M, SALEEM M, et al. Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy ofnisin[J]. Free Radical Biology and Medicine, 2016, 101: 434-445.
[18] ALVES C S, MELO M N, FRANQUELIM H G, et al. Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepR[J]. Journal of Biological Chemistry, 2010, 285(36): 27 536-27 544.
[19] PAL I, BRAHMKHATRI V P, BERA S, et al. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle[J]. Journal of Colloid and Interface Science, 2016, 483: 385-393.
[20] BAJAJ M, PANDEY S K, WANGOO N, et al. Peptide functionalized metallicnanoconstructs: Synthesis, structural characterization, and antimicrobial evaluation[J]. ACS Biomaterials Science & Engineering, 2018, 4(2): 739-747.
[21] RUDEN S, HILPERT K, BERDITSCH M, et al. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(8): 3 538-3 540.
[22] SIDHU P K, NEHRA K. Bacteriocin-capped silver nanoparticles for enhanced antimicrobial efficacy against food pathogens[J]. IET Nanobiotechnology, 2020, 14(3): 245-252.
[23] DARWISH R M, SALAMA A H. Study the effect of conjugate novel ultra-short antimicrobial peptide with silver nanoparticles against methicillin resistant S. aureus and ESBL E. coli[J]. Antibiotics, 2022, 11(8): 1 024.
[24] CHEN X, LI H, QIAO X, et al.Agarose oligosaccharide-silver nanoparticle-antimicrobial peptide-composite for wound dressing[J]. Carbohydrate Polymers, 2021, 269: 118258.
[25] GAO J, NA H, ZHONG R, et al. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity[J]. Colloids and Surfaces B: Biointerfaces, 2020, 186: 110704.
[26] MORALES-AVILA E, FERRO-FLORES G, OCAMPO-GARCA B E, et al. Antibacterial efficacy of gold and silver nanoparticles functionalized with the ubiquicidin (29~41) antimicrobial peptide[J]. Journal of Nanomaterials, 2017, 2 017: 1-10.
[27] LIU L, YANG J, XIE J, et al. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes[J]. Nanoscale, 2013, 5(9): 3 834-3 840.
[28] GOLUBEVA O Y, SHAMOVA O V, ORLOV D S, et al. Synthesis and study of antimicrobial activity ofbioconjugates of silver nanoparticles and endogenous antibiotics[J]. Glass Physics and Chemistry, 2011, 37: 78-84.
[29] DAI X, GUO Q, ZHAO Y, et al. Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 25 798-25 807.
[30] MUENRAVA P, SAWATDEE S, SRICHANA T, et al. Silver nanoparticles conjugated withcolistin enhanced the antimicrobial activity against gram-negative bacteria[J]. Molecules, 2022, 27(18): 5 780.
[31] 冯静, 汤善文, 周雪, 等. 谷胱甘肽辅助合成银纳米粒子及其抗菌活性研究[J]. 化工新型材料, 2023, 51(S2): 449-454. FENG J, TANG S W, ZHOU X, et al. The study of glutathione-assisted synthesis of Silver nanoparticles and their antibacterial activities[J]. New Chemical Materials, 2023, 51(S2): 449-454.
[32] 张亚茹, 凌丽燕, 陈敏. EUCAST和CLSI微量肉汤稀释法白念珠菌体外药物敏感性试验结果比较[J]. 检验医学, 2022, 37(10): 974-978. ZHANG Y R, LING L Y, CHEN M. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing against Candida albicans[J]. Laboratory Medicine, 2022, 37(10): 974-978.
[33] SALAM M A, AL-AMIN M Y, PAWAR J S, et al. Conventional methods and future trends in antimicrobial susceptibility testing[J]. Saudi Journal of Biological Sciences, 2023, 30(3): 103582.
[34] SOLEYMANI M, KABIRIFARD H, HEKMATI M, et al. In situ bio-inspired fabrication of Ag nanoparticles onMatricaria chamomilla extract modified Cu-Al-Zn LDH as a beneficial antimicrobial agent[J]. Inorganic Chemistry Communications, 2024, 160: 111998.
[35] KHAN S, FIAZ M, YASMIN H, et al. Molecular profiling, characterization and antimicrobial efficacy of silver nanoparticles synthesized from calvatia gigantea and mycena leaiana against multidrug-resistant pathogens[J]. Molecules, 2023, 28(17): 6 291.
[36] ABDALLA S S I, KATAS H, CHAN J Y, et al. Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan[J]. RSC Advances, 2020, 10(9): 4 969-4 983.
[37] PRAMANIK S, CHATTERJEE S, SAHA A, et al. Unraveling the interaction of silver nanoparticles with mammalian and bacterial DNA[J]. The Journal of Physical Chemistry B, 2016, 120(24): 5 313-5 324.
[38] DAKAL T C, KUMAR A, MAJUMDAR R S, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles[J]. Frontiers in Microbiology, 2016, 7: 1 831.
[39] QING Y, CHENG L, LI R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies[J]. International Journal of Nanomedicine, 2018, 13: 3 311-3 327.
[40] KUMAR P, KIZHAKKEDATHU J N, STRAUS S K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo[J]. Biomolecules, 2018, 8(1): 4.
[41] 肖怀秋, 李玉珍, 林亲录, 等. 抗菌肽多靶点作用抑菌机理研究进展[J]. 食品与生物技术学报, 2022, 41(5): 11-19. XIAO H Q, LI Y Z, LIN Q L, et al. Advances in multiple targets mechanism of antimicrobial peptides[J]. Journal of Food Science and Biotechnology, 2022, 41(5): 11-19.
[42] MARDIROSSIAN M, GRZELA R, GIGLIONE C, et al. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis[J]. Chemistry & Biology, 2014, 21(12): 1 639-1 647.
[43] FENG Z V, GUNSOLUS I L, QIU T A, et al. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria[J]. Chemical Science, 2015, 6(9): 5 186-5 196.
[44] LI X, ROBINSON S M, GUPTA A, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria[J]. ACS Nano, 2014, 8(10): 10 682-10 686.
[45] FRANCO-ULLOA S, GUARNIERI D, RICCARDI L, et al. Association mechanism of peptide-coated metal nanoparticles with model membranes: A coarse-grained study[J]. Journal of Chemical Theory and Computation, 2021, 17(7): 4 512-4 523.
[46] THAPA R K, DIEP D B, TNNESEN H H. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: Recent advances and future prospects[J]. Journal of Pharmaceutical Investigation, 2021, 51: 377-398.
[47] QAYYUM S, KHAN A U. Nanoparticles vs. biofilms: A battle against another paradigm of antibiotic resistance[J]. Med Chem Comm, 2016, 7(8): 1 479-1 498.
[48] HUH A J, KWON Y J. "Nanoantibiotics": A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era[J]. Journal of Controlled Release, 2011, 156(2): 128-145.
[49] YANG L, WATTS D J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles[J]. Toxicology Letters, 2005, 158(2): 122-132.
[50] ZANNELLA C, SHINDE S, VITIELLO M, et al. Antibacterial activity of indolicidin-coated silver nanoparticles in oral disease[J]. Applied Sciences, 2020, 10(5): 1 837.
[51] MEI L, LU Z, ZHANG W, et al. Bioconjugated nanoparticles for attachment and penetration into pathogenic bacteria[J]. Biomaterials, 2013, 34(38): 10 328-10 337.
[52] PAL I, BHATTACHARYYA D, KAR R K, et al. A peptide-nanoparticle system with improved efficacy against multidrug resistant bacteria[J]. Scientific Reports, 2019, 9(1): 4 485.
[53] 杨悦, 李燕, 王小方, 等. 抗菌肽及其在食物储藏与保鲜中的应用[J]. 食品与生物技术学报, 2021, 40(4): 9-16. YANG Y, LI Y, WANG X F, et al. Antimicrobial peptides and their applications in food storage and preservation[J]. Journal of Food Science and Biotechnology, 2021, 40(4): 9-16.
[54] LOPES N A, BRANDELLI A. Nanostructures for delivery of natural antimicrobials in food[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(13): 2 202-2 212.
[55] PANDIT R, RAI M, SANTOS C A. Enhanced antimicrobial activity of the food-protecting nisin peptide by bioconjugation with silver nanoparticles[J]. Environmental Chemistry Letters, 2017, 15: 443-452.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.