•  
  •  
 

Corresponding Author(s)

李涛 (1983—),男,常州大学副教授,博士。E-mail:roboylee@163.com

Abstract

[Objective] To meet the practical requirements for comprehensive grading based on the appearance quality and size of apples, and to address issues such as low efficiency of manual sorting, complex structure, and high cost of sorting equipment for Chinese apples. [Methods] A YOLOv5s-apple model was proposed. The transformer module and CBAM attention module were introduced into the backbone network, and the weighted Bidirectional feature pyramid network (Bi-FPN) was added to improve the neck network. Then, combined with HALCON software, a self-designed intelligent apple damage detection system was used to carry out damage sorting and size classification. [Results] The experimental results showed that compared with the original YOLOv5s model, the mAP of the YOLOv5s-Apple model was improved by 6.2%, and the accuracy of apple sorting system could reach 97.5%, the processing speed of the system was 5 s/apple. [Conclusion] The system can effectively carry out apple grading and sorting, and provide a reference for the intellectualization and low cost of Apple detection equipment.

Publication Date

7-22-2024

First Page

138

Last Page

142

DOI

10.13652/j.spjx.1003.5788.2024.80048

References

[1] TIAN Y, YANG G, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[2] 余梅, 文艺, 毛敏. 我国苹果对外贸易格局及发展趋势[J]. 中国果树, 2022(7): 100-104. YU M, WEN Y, MAO M. The pattern and development trend of China's apple foreign trade[J]. China Fruits, 2022(7): 100-104.
[3] SOFU M M, ER O, KAYACAN M C, et al. Design of an automatic apple sorting system using machine vision[J]. Computers and Electronics in Agriculture, 2016, 127: 395-405.
[4] FAN S, LIANG X, HUANG W, et al. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network[J]. Computers and Electronics in Agriculture, 2022, 193: 106715.
[5] XU B, CUI X, JI W, et al. Apple grading method design and implementation for automatic grader based on improved YOLOv5[J]. Agriculture, 2023, 13(1): 124.
[6] 姚素红, 陈凯峰, 赵华洋. 基于PLC控制的苹果分拣系统设计与测试[J]. 包装与食品机械, 2022, 40(4): 62-67. YAO S H, CHEN K F, ZHAO H Y. Design and test of apple sorting system based on PLC control[J]. Packaging & Food Machinery, 2022, 40(4): 62-67.
[7] 周胜安, 黄耿生, 张译匀, 等. 基于深度学习的水果缺陷实时检测方法[J]. 食品与机械, 2021, 37(11): 123-129. ZHOU S A, HUANG G S, ZHANG Y J, et al. Real time detection Method of fruit defects based on deep learning[J]. Food & Machinery, 2021, 37(11): 123-129.
[8] 李学军, 程红. 基于决策融合的苹果分级检测关键技术研究[J]. 食品与机械, 2020, 36(12): 136-140. LI X J, CHENG H. Study on key technologies for apple grading detection based on decision fusion method[J]. Food & Machinery, 2020, 36(12): 136-140.
[9] ZHANG Z, LU Y, LU R. Development and evaluation of an apple infield grading and sorting system[J]. Postharvest Biology and Technology, 2021, 180: 111588.
[10] HU G, ZHANG E, ZHOU J, et al. Infield apple detection and grading based on multi-feature fusion[J]. Horticulturae, 2021, 7(9): 276.
[11] LEE J H, VO H T, KWON G J, et al. Multi-camera-based sorting system for surface defects of apples[J]. Sensors, 2023, 23(8): 3 968.
[12] 彭彦昆, 孙晨, 刘乐, 等. 苹果外部缺陷全表面在线检测分选装置研发[J]. 农业工程学报, 2022, 38(23): 266-275. PENG Y K, SUN C, LIU L, et al. Development of full-surface online detection and sorting device for external defects of apples[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 266-275.
[12] 白强, 高荣华, 赵春江, 等. 基于改进YOLOV5s网络的奶牛多尺度行为识别方法[J]. 农业工程学报, 2022, 38(12): 163-172. BAI Q, GAO R H, ZHAO C J, et al. Multi-scale behavior recognition method for dairy cows based on improved YOLOV5s network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(12): 163-172.
[13] YAO J, QI J, ZHANG J, et al. A real-time detection algorithm for kiwifruit defects based on YOLOv5[J]. Electronics, 2021, 10(14): 1 711.
[14] YUN S, HAN D, OH S J, et al. Cutmix: regularization strategy to train strong classifiers with localizable features[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Piscataway, NJ: IEEE Press, 2019: 6 023-6 032.
[15] 宁远霖, 杨颖, 李振波, 等. 基于改进YOLOv5的复杂跨域场景下的猪个体识别与计数[J]. 农业工程学报, 2022, 38(17): 168-175. NING Y L, YANG Y, LI Z B, et al. Recognition and counting of pig individuals in complex cross domain scenarios based on improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 168-175.
[16] 查健, 陈先中, 王文财, 等. 基于改进的YOLOv5s刨花板表面小目标缺陷检测算法[J/OL]. 计算机工程与应用. (2023-08-14) [2023-12-13]. http://kns.cnki.net/kcms/detail/11.2127.TP.20230811.1707.024.html. ZHA J, CHEN X Z, WANG W C, et al. Small target defect detection algorithm of particleboard surface based on improved YOLOv5s[J/OL]. Computer Engineering & Application. (2023-08-14) [2023-12-13]. http://kns.cnki.net/kcms/detail/11.2127.TP.20230811.1707.024.html.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6 000-6 010.
[18] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the Europe Conference on Computer Vision(ECV). Munich, Germany: Springer, 2018: 3-19.
[19] 高云茜, 邓三鹏. 基于YOLOv5-en算法的草莓采摘机器人目标检测技术[J]. 实验技术与管理, 2023, 40(10): 178-183, 216. GAO Y Q, DENG S P. Object detection technology of strawberry picking robot based on YOLOv5-en algorithm[J]. Experimental Technology & Management, 2023, 40(10): 178-183, 216.
[20] 王梦妮, 顾寄南, 王化佳, 等. 基于改进YOLOv5s模型的茶叶嫩芽识别方法[J]. 农业工程学报, 2023, 39(12): 150-157. WANG M N, GU J N, WANG H J, et al. Tea bud recognition method based on improved YOLOv5s model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(12): 150-157.
[21] 冯运发, 王新彦, 佘银海, 等. 基于HALCON软件与HSV模型的树木检测算法研究[J]. 江苏农业科学, 2019, 47(6): 188-192. FENG Y F, WANG X Y, SHE Y H, et al. Trees detection algorithm based on HALCON software and HSV model study[J]. Journal of Jiangsu Agricultural Science, 2019, 47(6): 188-192.
[22] 项辉宇, 薛真, 冷崇杰, 等. 基于Halcon的苹果品质视觉检测试验研究[J]. 食品与机械, 2016, 32(10): 123-126. XIANG H Y, XUE Z, LEN C J, et al. Experimental study on visual inspection of apple quality based on Halcon[J]. Food & Machinery, 2016, 32(10): 123-126.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.