•  
  •  
 

Abstract

[Objective] In order to study the effects of geosynclinal ventilation on the temperature of tall bungalow warehouse. [Methods] The numerical simulation software COMSOL was used to conduct numerical simulation of temperature field under mechanical ventilation for 96 h for tall bungalow warehouse with size of 60 m×24 m and loading height of 6 m. By establishing the mass conservation equation, momentum conservation equation and energy conservation equation, the variation of temperature field in the warehouse under different ventilation modes was analyzed, and the numerical simulation of different unit ventilation conditions was extended. [Results] After mechanical ventilation for 36 h, most of the grain pile below the grain line in the warehouse had dropped to 15 ℃, and after mechanical ventilation for 96 h, the temperature of the grain pile had dropped to below 15 ℃, the grain layer temperature at the distance of 1~6 m from the bottom of the warehouse all dropped below 15.2 ℃. By changing the unit ventilation rate [q=3 m3/(h·t) to q=8 m3/(h·t)], the cooling rate of the grain pile became faster. [Conclusion] The temperature of the grain pile decreases gradually from the bottom of the bin and spreads in an arc shape under the geosynclinal ventilation condition. The grain layer 1 m and 2 m away from the bottom of the warehouse is affected by the fluctuation of external environment temperature, and the temperature gradually decreased in the fluctuation. With the increase of the distance between the grain layer and the bottom of the warehouse, the temperature fluctuation gradually disappears. The temperature change of grain pile in the bin appears a certain lag, and the cooling rate of grain layer temperature decreases with the increasing distance from the bottom of the bin, and the increase of the unit ventilation rate makes the grain pile get better cooling effect.

Publication Date

7-22-2024

First Page

152

Last Page

157

DOI

10.13652/j.spjx.1003.5788.2023.80059

References

[1] 黄娴, 陈佳, 陈可心. 无线传感技术在粮食仓储环境监测中的应用[J]. 食品与机械, 2021, 37(10): 133-137. HUANG X, CHEN J, CHEN K X. Application of wireless sensor technology in grain storage environment monitoring[J]. Food & Machinery, 2021, 37(10): 133-137.
[2] 张祥祥, 张昊, 王振清, 等. 内衬塑料地下粮食筒仓粮堆温度场研究[J]. 农业工程学报, 2021, 37(16): 8-14. ZHANG X X, ZHANG H, WANG Z Q, et al. Research on the temperature field of grain piles in underground grain silos lined with plastic[J]. Chinese Journal of Agricultural Engineering, 2021, 37(16): 8-14.
[3] 崔宏伟, 吴文福, 吴子丹, 等. 基于温度场云图的储粮数量监控方法研究[J]. 农业工程学报, 2019, 35(4): 290-298. CUI H W, WU W F, WU Z D, et al. Research on the monitoring method of grain storage quantity based on temperature field cloud map[J]. Chinese Journal of Agricultural Engineering, 2019, 35(4): 290-298.
[4] 张瑞元. 地下粮仓钢板与塑料内壁粮食结露实验与数值模拟[D]. 郑州: 河南工业大学, 2020: 1-3. ZHANG R Y. Experiment and numerical simulation of grain condensation on the inner wall of steel plate and plastic in underground granary[D]. Zhengzhou: Henan University of Technology, 2020: 1-3.
[5] 沈邦灶, 叶盈盈, 俞鲁锋, 等. 基于横向通风系统的粮堆动态控温储粮应用研究[J]. 粮油仓储科技通讯, 2019, 35(1): 29-32. SHEN B Z, YE Y Y, YU L F, et al. Application of dynamic temperature control for grain storage in grain pile based on transverse ventilation system[J]. Journal of Grain and Oil Storage Technology Communication, 2019, 35(1): 29-32.
[6] 刘伟, 罗景瑞, 吴树会. 地槽通风改造系统生产性试验研究[J]. 粮食储藏, 2019, 48(4): 4-6, 13. LIU W, LUO J R, WU S H. Production test study of geosynclinal ventilation reconstruction system[J]. Food Storage, 2019, 48(4): 4-6, 13.
[7] NUTTALL J G, O'LEARY G J, PANOZZO J F, et al. Models of grain quality in wheat: a review[J]. Field Crops Research, 2017, 202: 136-145.
[8] JIA C, SUN D, CAO C, et al. Computer simulation of temperature changes in a wheat storage bin[J]. Journal of Stored Products Research, 2001, 37(2): 165-177.
[9] THORPE G R. Modelling ecosystems in ventilated conical bottomed farm grain silos[J]. Ecological Modelling, 1997, 94: 255-286.
[10] THORPE G R. The application of computational fluid dynamics codes to simulate heat and moisture transfer in stored grains[J]. Journal of Stored Products Research, 2008, 44(1): 21-31.
[11] ANDRADE E T, COUTO S M, QUEIROZ D M, et al. Three-dimensional simulation of the temperature variation in corn stored in metallic bin[C]// Guido de Sousa Damasceno, American Society of Agricultural and Biological Engineers. Chicago: [s.n.], 2002: 28-31.
[12] MONTROSS M D, MAIER D E, HAGHIGHI K. Development of a finite-element stored grain ecosystem model[J]. Transactions of the ASAE, 2002, 45(5): 1 455-1 464.
[13] 陈桂香, 张宏伟, 王海涛, 等. 基于COMSOL的平房仓冷却通风过程中粮堆热湿耦合传递研究[J]. 中国粮油学报, 2018, 33(11): 79-85. CHEN G X, ZHANG H W, WANG H T, et al. Research on coupled heat and humidity transfer of grain reactor during cooling and ventilation of bungalow based on COMSOL[J]. China Journal of Cereals and Oils, 2018, 33(11): 79-85.
[14] 葛蒙蒙, 陈桂香, 刘文磊, 等. 基于COMSOL的静态仓储稻谷粮堆温度场模拟研究[J]. 河南工业大学学报(自然科学版), 2020, 41(6): 101-105. GE M M, CHEN G X, LIU W L, et al. Simulation of temperature field of static storage rice and grain pile based on COMSOL[J]. Journal of Henan University of Technology (Natural Science Edition), 2020, 41(6): 101-105.
[15] 王远成, 高帅, 邱化禹, 等. 横向谷冷通风过程的数值模拟研究[J]. 中国粮油学报, 2016, 31(7): 103-106. WANG Y C, GAO S, QIU H Y, et al. Numerical simulation of transverse valley cooling ventilation[J]. China Journal of Grain and Oil, 2016, 31(7): 103-106.
[16] 张修霖, 杨开敏, 王远成, 等. 浅圆仓压入式和吸出式通风效果对比研究[J]. 山东农业大学学报(自然科学版), 2021, 52(1): 63-69. ZHANG X L, YANG K M, WANG Y C, et al. Comparative study on the effect of compression ventilation and suction ventilation in shallow silo[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(1): 63-69.
[17] 王远成, 石天玉, 曲安迪, 等. 高大平房仓双侧吸出式斜流通风数值模拟和实验的比较研究[J]. 中国粮油学报, 2020, 35(3): 139-146. WANG Y C, SHI T Y, QU A D, et al. Comparative study on numerical simulation and experiment of double-side suction oblique flow air in tall bungalow[J]. China Journal of Cereals and Oils, 2019, 35(3): 139-146.
[18] 余海, 杨开敏, 王远成, 等. 储粮横向通风多尺度热湿耦合传递研究[J]. 中国粮油学报, 2021, 36(8): 74-78, 87. YU H, YANG K M, WANG Y C, et al. Research on multi-scale coupled heat and moisture transfer in transverse ventilation of grain storage[J]. Journal of Cereals and Oils, 2019, 36(8):74-78, 87.
[19] 王远成, 段海峰, 张来林. 就仓通风时粮堆内部热湿耦合传递过程的数值预测[J]. 河南工业大学学报(自然科学版), 2009, 30(6): 75-79. WANG Y C, DUAN H F, ZHANG L L. Numerical prediction of coupled heat and humidity transfer process in grain reactor under bin ventilation[J]. Journal of Henan University of Technology (Natural Science Edition), 2009, 30(6): 75-79.
[20] HE H C, LI S M, ZHE L, et al. Error analysis of high-moisture maize moisture measurement with PM8188 grain moisture tester[C]// First International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC). Beijing: IEEE, 2011: 1-3.
[21] 张得正, 余克志, 张彤. 基于分形理论的火龙果冻干过程数值模拟[J]. 食品与机械, 2022, 38(11): 143-148. ZHANG D Z, YU K Z, ZHANG T. Numerical simulation of pitaya freeze-drying process based on fractal theory[J]. Food & Machinery, 2022, 38(11): 143-148.
[22] 尹君. 小麦粮堆多场耦合模型及结露预测研究[D]. 长春: 吉林大学, 2015: 55-56. YIN J. Research on multi-field coupling model and dew prediction of wheat grain pile[D]. Changchun: Jilin University, 2015: 55-56.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.