Abstract
The natural vegetable oil known as Korean pine seed oil is well-known for its high content of being various unsaturated fatty acids, including oleic, linoleic and pinopuric acid. It has been proved that Korean pine seed oil has several physiological benefits such as lowering blood lipids, enhanceing immunity, anti-inflammation, anti-oxidation, enhancing insulin sensitivity, and anti-tumor. This review summarized the extraction methods and pharmacological effects of Korean pine seed oil in recent years, and put forward good suggestions for its application in edible oil and industrial production.
Publication Date
7-22-2024
First Page
233
Last Page
240
DOI
10.13652/j.spjx.1003.5788.2023.80702
Recommended Citation
Ping, CHEN; Jin, WANG; and Hua, LI
(2024)
"Research progress on extraction methods and biological activities of Korean pine seed oil,"
Food and Machinery: Vol. 40:
Iss.
6, Article 33.
DOI: 10.13652/j.spjx.1003.5788.2023.80702
Available at:
https://www.ifoodmm.cn/journal/vol40/iss6/33
References
[1] 包三三. 红松籽油中皮诺敛酸高效分离及降脂活性评估[D]. 哈尔滨: 东北林业大学, 2021: 1-3.
BAO S S. Efficient separation and liquid-lowering activity evaluation of pinolenic acid from Pinus koraiensis seed oil[D]. Harbin: Northeast Forestry University, 2021: 1-3.
[2] ZADERNOWSKI R, MARIAN N, SYLWESTER C. Chemical composition of Pinus sibirica nut oils[J]. European Journal of Lipid Science and Technology, 2009, 111(7): 698-704.
[3] ZHANG Y, WANG Z J, ZHANG X J, et al. Formulation, characterization, pharmacokinetics and antioxidant activity evaluation of Pinus koraiensis nuts oil based coenzyme Q(10) loaded nanoemulsion[J]. Industrial Crops and Products, 2022, 187: 115444.
[4] 王莉莉, 赵庆佳, 张娜, 等. 不同提取方法对红松籽油甾醇浸提及功能性质影响的研究[J]. 中国粮油学报, 2022, 37(6): 125-134.
WANG L L, ZHAO Q J, ZHANG N, et al. Effects of different extraction methods on extraction effect and functions of Korean pine oil sterol[J]. Journal of the Chinese Cereals and Oils, 2022, 37(6): 125-134.
[5] 宋明发, 杨芸, 白冉冉, 等. 不同方法提取山桐子油的品质及体外抗氧化活性研究[J]. 中国调味品, 2022, 47(3): 28-32, 38.
SONG M F, YANG Y, BAI R R, et al. Quality and antioxidant activity in vitro of Idesia polycarpa maxim oils extracted by different methods[J]. China Condiment, 2022, 47(3): 28-32, 38.
[6] 张志强, 张海满, 李晓红, 等. 胡麻籽油提取工艺的研究[J]. 青海大学学报(自然科学版), 2009, 27(6): 7-9.
ZHANG Z Q, ZHANG H M, LI X H, et al. Extraction technique of linseed oil[J]. Journal of Qinghai University, 2009, 27(6): 7-9.
[7] 李默馨, 王妍, 周晓丹, 等. 冷榨红松籽油的工艺研究[J]. 食品工业, 2010, 31(5): 79-81.
LI M X, WANG Y, ZHOU X D, et al. Study on cold-pressed of Korean pine seed oil[J]. The Food Industry, 2010, 31(5): 79-81.
[8] 刘静波, 程婉露, 姚志新, 等. 长白山红松籽油的提取及脂肪酸成分分析[J]. 食品工业科技, 2014, 35(6): 239-244.
LIU J B, CHEN W L, YAO Z X, et al. GC-MS analysis of aliphatic acid extracted from red pine seeds using cold pressing technology[J]. Science and Technology of Food Industry, 2014, 35(6): 239-244.
[9] 张忠, 王呈馨, 范柳萍, 等. 不同提取工艺翅果油抗氧化能力与活性成分的分析[J]. 中国油脂, 2020, 45(9): 23-29.
ZHANG Z, WANG C X, FAN L P, et al. Antioxidant ability and active components of Elaeagnus mollis Diels seed oil extracted by different processes[J]. China Oils and Fats, 2020, 45(9): 23-29.
[10] 刘瑞利, 张传许, 占剑峰. 有机溶剂法提取米糠油工艺的研究[J]. 中国酿造, 2015, 34(10): 121-124.
LI R L, ZHANG C X, ZHAN J F, et al. Study on cold-pressed of Korean pine seed oil[J]. China Brewing, 2015, 34(10): 121-124.
[11] 姚雪峰, 洪海龙, 石俊庭, 等. 有机溶剂法和超临界CO2萃取法提取蒙艾挥发油的对比研究[J]. 广州化工, 2020, 48(23): 55-57.
YAO X F, HONG H L, SHI J T, et al. Comparative study on extraction of Volatile oil from Meng Ai with organic solvent and supercritical CO2 extraction[J]. Guangzhou Chemical Industry, 2020, 48(23): 55-57.
[12] 潘晓丽, 王凤娟, 张娜, 等. 不同提取方法对红松籽油提取效果及功能性质的影响[J]. 北京林业大学学报, 2021, 43(1): 127-135.
PAN X L, WANG F J, ZHANG N, et al. Effects of different extraction methods on extraction effect and functional properties of Korean pine seed oil[J]. Journal of Beijing Forestry University, 2021, 43(1): 127-135.
[13] 王振宇, 李宏菊, 郭庆启, 等. 响应面法对红松油提取工艺参数的优化[J]. 中国粮油学报, 2009, 24(4): 78-81.
WANG Z Y, LI H J, GUO Q Q, et al. Optimization of process parameters of Korean pine oil extraction by response surface method[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(4): 78-81.
[14] 宋美玲. 超临界二氧化碳萃取沙棘籽油的工艺研究[J]. 食品工程, 2023(1): 22-24.
SONG M L. Study on extraction technology of seabuckthorn seed oil by supercritical carbon dioxide[J]. Food Engineering, 2023(1): 22-24.
[15] 黄沅玮. 超临界流体萃取技术及其在植物油脂提取中的应用[J]. 食品工程, 2020(3): 12-15, 61.
HUANG R W. Supercritical fluid extraction technology and its application in the extraction of vegetable oil[J]. Food Engineering, 2020(3): 12-15, 61.
[16] 李清光. 超临界CO2萃取红松籽油的研究[D]. 大连: 大连工业大学, 2008: 17-23.
LIQ G. Study on supercritical CO2 extraction of Korean pine seed oil[D]. Dalian: Dalian Polytechnic University, 2008: 17-23.
[17] 胡小泓, 贺祥柯, 郭小燕, 等. 超临界CO2对整粒松仁萃取的研究[J]. 中国油脂, 2004, 29(3): 62-64.
HU X H, HE X K, GUO X Y, et al. Study on the extraction of whole pine kernels by supercritical CO2[J]. China Oils and Fats, 2004, 29(3): 62-64.
[18] 范宇航, 张潮, 李敏, 等. 基于超声辅助技术提取食品原料中脂质的研究进展[J]. 食品研究与开发, 2023, 44(7): 185-192.
FAN Y H, ZHANG C, LI M, et al. Lipid extraction from food based on ultrasound-assisted technology: a review[J]. Food Research and Development, 2023, 44(7): 185-192.
[19] 徐开伟, 邹小彤, 刘意, 等. 耦合浮珠—超声辅助溶剂萃取法用于微藻采收及油脂提取[J]. 农业工程学报, 2021, 37(15): 267-274.
XU K W, ZHOU X T, LIU Y, et al. Coupled floating bead-ultrasonic-assisted solvent extraction was used for microalgae harvesting and oil extraction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 267-274.
[20] 王凤娟, 夏晓雨, 张娜, 等. 减压—超声波联用提取红松籽油动力学模型及油脂组成、抗氧化活性研究[J]. 中南林业科技大学学报, 2019, 39(11): 110-117.
WANG F J, XIA X Y, ZHANG N, et al. Kinetic model, fatty acid composition and antioxidant activity of Korean pine seed oil extracted by decompression assisted ultrasonic[J]. Journal of Central South University of Forestry & Technology, 2019, 39(11): 110-117.
[21] ZHANG Y, WANG Z Y, CHEN X Q. Ultrasound- associated extraction of seed oil of Korean pine[J]. Journal of Forestry Research, 2005, 16(2): 140-142.
[22] TEIXEIRA C B, MACEDO G A, MACEDO J A, et al. Simultaneous extraction of oil and antioxidant compounds from oil palm fruit (Elaeis guineensis) by an aqueous enzymatic process[J]. Bioresource Technology, 2013, 129: 575-581.
[23] 何林枫, 王静, 李利钦, 等. 水酶法提取樱桃籽油的工艺及理化性质[J]. 食品与机械, 2023, 39(3): 188-193, 216.
HE L X F, WANG J, LI L Q, et al. Optimization on extraction of cherry seed oil by aqueous enzymatic method and analysis of its physical-chemical properties[J]. Food & Machinery, 2023, 39(3): 188-193, 216.
[24] 周琪, 韦家辉, 盛智丽, 等. 双酶法提取红松籽油及其抗氧化分析[J]. 食品研究与开发, 2019, 40(1): 57-63.
ZHOU Q, WEI J H, SHENG Z L, et al. Double enzymatic extraction of Korean pine seed oil and analysis of antioxidation[J]. Food Research and Development, 2019, 40(1): 57-63.
[25] 程倩, 初柏君, 杨潇, 等. 水酶法提取葵花籽仁油工艺的优化及对油脂品质的影响[J]. 食品安全质量检测学报, 2021, 12(17): 6 969-6 974.
CHEN Q, CHU B J, CHEN X, et al. Optimization of aqueous enzymatic extraction process of sunflower seeds oil and the effect on its quality[J]. Journal of Food Safety & Quality, 2021, 12(17): 6 969-6 974.
[26] CHEN X Q, ZHANG Y, WANG Z Y, et al. In vivo antioxidant activity of Pinus Koraiensis nut oil obtained by optimised supercritical carbon dioxide extraction[J]. Natural Product Research, 2011, 25(19): 1 807-1 816.
[27] 李杨, 江连洲, 王胜男, 等. 响应面法优化水酶法提取松子油的研究[J]. 中国粮油学报, 2012, 27(3): 60-65.
LI Y, JIANG L Z, WANG S N, et al. Optimization on aqueous enzymatic extraction conditions of pine seed oil by response surface method[J]. Soybean Science & Technology, 2012, 27(3): 60-65.
[28] HOU L X, LI C C, QIU J H. Comparison of the physicochemical characteristics of Pinus Koraiensis L. nut oils from different extraction technologies[J]. Grain & Oil Science and Technology, 2018, 1(3): 113-118.
[29] 王忠娟. 红松籽油辅酶Q10纳米乳的制备、表征及活性评价[D]. 哈尔滨: 东北林业大学, 2023: 4-5.
WANG Z J. Preparation, characterization and activity evaluation of coenzyme Q10 nanoemulsion from Korean pine seed oil[D]. Harbin: Northeast Forestry University, 2023: 4-5.
[30] PAN L R, SEGREST J P. Computatinal studies of plasma lipoprotein lipids[J]. Biochimica et Biophysica Acta-Biomembranes, 2016, 1 858(10): 2 401-2 420.
[31] NGUYEN P, LERAY V, DIEZ M, et al. Liver lipid metabolism[J]. Journal of Animal Physiology and Animal Nutrition, 2008, 92(3): 272-283.
[32] 刘静波, 吴丽英, 董红竹, 等. 长白山红松籽油对小鼠血清及肝脏、肾脏脂质的影响[J]. 食品科学, 2014, 35(23): 257-261.
LIU J B, WU L Y, DONG H Z, et al. Effect of nut oil of Korean pine from the Changbai mountain on serum and visceral lipids in mice[J]. Food Science, 2014, 35(23): 257-261.
[33] SHUANG Z, PARK S, LIM Y, et al. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice[J]. Nutrition Research and Practice, 2016 10(5): 477-486.
[34] ASSET G, STAELS B, WOLFF R L, et al. Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat[J]. Lipids, 1999, 34(1): 39-44.
[35] CHEN X Q, ZHANG Y, WANG Z Y, et al. In vivo anti-oxidant activity of Pinus koraiensis nut oil obtained by optimised supercritical carbon dioxide extraction[J]. Natural Product Research, 2011, 25(19): 1 807-1 816.
[36] BAKER E, MILES E, CALDER P. A review of the functional effects of pine nut oil, pinolenic acid and its derivative eicosatrienoic acid and their potential health benefits[J]. Progress in Lipid Research, 2021, 82: 101097.
[37] BURTON-FREEMAN B, DAVIS P A, SCHNEEMAN B O. Interaction of fat availability and sex on postprandial satiety and cholecystokinin after mixed-food meals[J]. The American Journal of Clinical Nutrition, 2004, 80(5): 1 207-1 214.
[38] GUTZWILLER J P, DEGEN L, MATZINGER D, et al. Interaction between GLP-1 and CCK-33 in inhibiting food intake and appetite in men[J]. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287(3): R562-R567.
[39] PASMAN W J, HEIMERIKX J, RUBINGH C M, et al. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women[J]. Lipids in Health and Disease, 2008, 7(1): 10.
[40] HUGHES G M, BOYLAND E J, WILLIAMS N J, et al. The effect of Korean pine nut oil (PinnoThin) on food intake, feeding behaviour and appetite: a double-blind placebo controlled trial[J]. Lipids in Health and Disease, 2008, 7(1): 1-10.
[41] PARK S, LIM Y, SHIN S, et al. Impact of Korean pine nut oil on weight gain and immune responses in high fat diet-induced obese mice[J]. Nutrition Research and Practice, 2013, 7(5): 352-358.
[42] LE N H, SHIN S, TU T H, et al. Diet enriched with Korean pine nut oil improves mitochondrial oxidative metabolism in skeletal muscle and brown adipose tissue in diet-induced obesity[J]. Journal of Agricultural and Food Chemistry, 2012, 60(48): 11 935-11 941.
[43] GEORGIADI A, LICHTENSTEIN L, DEGENHARDT T, et al. Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor β/δ and protects against fatty acid-induced oxidative stress[J]. Circulation Research, 2010, 106(11): 1 712-1 721.
[44] BHANDAR I C, AGNIHOTR N. Pine nut oil supplementation alleviates the obesogenic effects in high-fat diet induced obese rats: a comparative study between epididymal and retroperitoneal adipose tissue[J]. Nutrition Research, 2022, 106(11): 85-100.
[45] 刘治廷, 王忠娟, 张秀娟, 等. 马齿苋抑菌活性成分研究进展[J]. 食品科学, 2023, 44(19): 359-371.
LIU Z T, WANG Z J, ZHANG X J, et al. Recent advances in research on chemical components and antibacterial activities of Portulaca oleracea L.[J]. Food Science, 2023, 44(19): 359-371.
[46] WEREMFO A, ADULLEY F, DABIE K, et al. Optimization of ultrasound-assisted extraction of phenolic antioxidants from turkey berry (Solanum torvum Sw) fruits using response surface methodology[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2022, 30: 100387.
[47] WANG Z Y, CHEN X Q. Functional evaluation for effective compositions in seed oil of Korean pine[J]. Journal of Forestry Research, 2004, 15(3): 215-217.
[48] WEIR G C. Islet inflammation can be linked to the disruption of proinsulin processing in type 1 diabetes but not in type 2 diabetes[J]. Journal of Clinical Endocrinology & Metabolism, 2022, 108(2): E21-E22.
[49] CHRISTIANSEN E, WATTERSON K R, STOCKER C J, et al. Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases[J]. British Journal of Nutrition, 2015, 113(11): 1 677-1 688.
[50] ITOH Y, KAWAMATA Y, HARADA M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40[J]. Nature, 2003, 1 600(2 000): 2 001-2 004.
[51] IM D S. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation[J]. Molecular Aspects of Medicine, 2017, 64: 92-108.
[52] CHEN S J, HSU C P, LI C W, et al. Pinolenic acid inhibits human breast cancer MDA-MB-231 cell metastasis in vitro[J]. Food Chemistry, 2011, 126(4): 1 708-1 715.
[53] 孔维溧, 芦鑫荣, 侯琳琳, 等. 维生素与免疫系统健康[J]. 四川大学学报(医学版), 2023, 54(1): 7-13.
KONG W L, LU X R, HOU L L, et al. Vitamins and immune system health[J]. Journal of Sichuan University (Medical Sciences), 2011, 126(4): 1 708-1 715.
[54] BENQUET C, KRZYSTYNIAK K, SAVARD R, et al. Modulation of exercise-induced immunosuppression by dietary polyunsaturated fatty acids in mice[J]. Journal of Toxicology and Environmental Health, 1994, 43(2): 225-237.
[55] MATSUO N, OSADA K, KODAMA T, et al. Effects of γ-linolenic acid and its positional isomer pinolenic acid on immune parameters of brown-norway rats[J]. Prostaglandins Leukotrienes and Essential Fatty Acids, 1996, 55(4): 223-229.