Abstract
[Objective] Achieving a rapid, sensitive, and visual detection of 6-benzylaminopurine (6-BA) residues in vegetables. [Methods] Based on the peroxidase-like activity and specific recognition of Fe3O4 magnetic molecularly imprinted nanoparticles (Fe3O4 MMIP NPs), a simple, rapid and highly selective colorimetric method was established to detect 6-BA residues in vegetables. [Results] Fe3O4 MMIP NPs exhibits optimal peroxidase-like catalytic activity at pH 4.0, 0.02 mol/L TMB, 0.02 mol/L H2O2 and a reaction time of 5 min. 6-BA showed a good linear relationship with the difference between the blank and the sample absorbance value in the mass concentration range of 1~300 ng/mL with a limit of detection at 0.697 ng/mL. The method was successfully applied to the detection of 6-BA residues in vegetables (cucumber, tomato, bean sprouts, mung bean sprouts). The recovery rate was 83.47%~106.76%, with a relative standard deviation of 0.37%~5.66%. In addition, Fe3O4 MMIP NPs could still maintain good catalytic activity after 60 days of storage at 4 ℃. [Conclusion] The colorimetric method for the detection of 6-BA based on Fe3O4 MMIP NPs has the advantages of simplicity, rapidity, economy, and can be used for the detection of 6-BA residues in vegetables, which has certain reliability and practicability.
Publication Date
7-22-2024
First Page
69
Last Page
76,103
DOI
10.13652/j.spjx.1003.5788.2024.80312
Recommended Citation
Yidan, LIU; Xin, LI; Jingli, WANG; Maiquan, LI; and Xia, LIU
(2024)
"Colorimetric detection of 6-benzylaminopurine residues in vegetables based on Fe3O4 magnetic molecular-imprinted nanoparticles,"
Food and Machinery: Vol. 40:
Iss.
6, Article 9.
DOI: 10.13652/j.spjx.1003.5788.2024.80312
Available at:
https://www.ifoodmm.cn/journal/vol40/iss6/9
References
[1] LIU Q Q, XING Y R, PANG X H, et al. Electrochemical immunosensor based on MOF for rapid detection of 6-benzyladenine in bean sprouts[J]. Journal of Food Composition and Analysis, 2023, 115: 105003.
[2] ZHANG Y X, GAO Z Y, HU M J, et al. Delay of ripening and senescence in mango fruit by 6-benzylaminopurine is associated with inhibition of ethylene biosynthesis and membrane lipid catabolism[J]. Postharvest Biology and Technology, 2022, 185: 111797.
[3] GAN T, LU Z, SUN Y Y, et al. Highly sensitive and molecular selective electrochemical sensing of 6-benzylaminopurine with multiwall carbon nanotube@SnS2-assisted signal amplification[J]. Journal of Applied Electrochemistry, 2016, 46(3): 389-401.
[4] WANG W X, WANG B R, LIU Z H, et al. Developmental toxicity and alteration of gene expression in zebrafish embryo exposed to 6-benzylaminopurine[J]. Chemosphere, 2019, 233: 336-346.
[5] 刘飞波, 王希, 刘水平. QuEChERS-HPLC法快速测定黄豆芽中6-苄基腺嘌呤含量的不确定度评定[J]. 食品与机械, 2021, 37(11): 67-71, 91.
LIU F B, WANG X, LIU S P. Evaluation of the uncertainty for determination of 6-benzyladenine in soybean sprouts by QuEChERS high-performance liquid chromatography[J]. Food & Machinery, 2021, 37(11): 67-71, 91.
[6] 王丽荣, 贾文君, 陈明敏, 等. 高效液相色谱法(HPLC)测定芒果多种植物生长调节剂含量[J]. 植物生理学报, 2022, 58(5): 981-988.
WANG L R, JIA W J, CHEN M M, et al. Determination of contents of several plant growth regulators in mango by high performance liquid chromatography (HPLC)[J]. Plant Physiology Journal, 2022, 58(5): 981-988.
[7] GONG T X, LI H N, WANG G L, et al. An anti-scratch flexible SERS substrate for pesticide residue detection on the surface of fruits and vegetables[J]. Nanotechnology, 2022, 33(40): 5 501-5 510.
[8] 王德响, 段禹, 孔大彬, 等. 硫化铋/石墨烯修饰电极检测豆芽中的6-苄氨基嘌呤[J]. 食品研究与开发, 2024, 45(2): 170-176.
WANG D X, DUAN Y, KONG D B, et al. Detection of 6-benzylaminopurine in bean sprouts by bismuth sulfide/graphene-modified electrode[J]. Food Research and Development, 2024, 45(2): 170-176.
[9] QUAN Q Q, LIU Z W, LI Z D, et al. Authenticating emergent adulterant 6-benzylaminopurine in bean sprouts: virtual hapten similarity enhanced immunoassay[J]. Journal of Agricultural and Food Chemistry, 2023, 71(21): 8 203-8 210.
[10] 王义平, 苏淑芳, 袁亚兰, 等. 纳米材料在食品重金属离子快速检测中的应用研究进展[J]. 食品与机械, 2024, 40(4): 233-240.
WANG Y P, SU S F, YUAN Y L, et al. Research progress of nanomaterials in the rapid detection of heavy metal ions in food[J]. Food & Machinery, 2024, 40(4): 233-240.
[11] 邱星晨, 范存霞, 白瑞, 等. 纳米酶在抗生素检测中的应用进展[J]. 科学通报, 2024, 69(增刊): 553-564.
QIU X C, FAN C X, BAI R, et al. Advances in applications of nanoenzymes in antibiotic detection[J]. Chinese Science Bulletin, 2024, 69(Z1): 553-564.
[12] GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2(9): 577-583.
[13] 范克龙, 高利增, 魏辉, 等. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
FAN K L, GAO L Z, WEI H, et al. Nanozymes[J]. Progress in Chemistry, 2023, 35(1): 1-87.
[14] 周鸿燕, 宋鋆. 基于Fe3O4@TiO2@Au的电化学传感器用于芦丁检测[J]. 食品与机械, 2023, 39(6): 81-87.
ZHOU H Y, SONG Y. Rutin detection by electrochemical sensor based on Fe3O4@TiO2@Au[J]. Food & Machinery, 2023, 39(6): 81-87.
[15] TANG G H, HE J Y, LIU J W, et al. Nanozyme for tumor therapy: surface modification matters[J]. Exploration, 2021, 1(1): 75-89.
[16] WANG Y C, DAI X Y, WU L N, et al. Atomic vacancies-engineered ultrathin trimetallic nanozyme with anti-inflammation and antitumor performances for intestinal disease treatment[J]. Biomaterials, 2023, 299: 122178.
[17] 黄桂珍, 汪庆祥, 陈金美, 等. 灵芝酸A分子印迹聚合物电化学传感器的制备及应用[J]. 食品与机械, 2023, 39(1): 24-30.
HUANG G Z, WANG Q X, CHEN J M, et al. Preparation and analytical application of molecularly imprinted polymer electrochemical sensor for ganoderic acid A[J]. Food & Machinery. 2023, 39(1): 24-30.
[18] PEYMAN A, SAJJAD J, SOMAYEH F, et al. Highly selective molecularly imprinted polymer nanoparticles (MIP NPs)-based microfluidic gas sensor for tetrahydrocannabinol (THC) detection[J]. Analytica Chimica Acta, 2023, 1 278: 341749.
[19] TORRES E S, LPEZ R, SOTOMAYOR T P D M, et al. Synthesis, characterization, and evaluation of a novel molecularly imprinted polymer (MIP) for selective quantification of curcumin in real food sample by UV-Vis spectrophotometry[J]. Polymers, 2023, 15(16): 3 332-3 346.
[20] 杨帆, 付东, 李鹏, 等. 磁性分子印迹聚合物中磁核的制备和表征[J]. 黑龙江大学工程学报, 2022, 13(4): 42-47.
YANG F, FU D, LI P, et al. Preparation and characterization of magnetic cores in magnetic molecularly imprinted polymers[J]. Journal of Engineering of Heilongjiang University, 2022, 13(4): 42-47.
[21] LI M Q, LUO L L, LI J Y, et al. Colorimetric chemosensor based on Fe3O4 magnetic molecularly imprinted nanoparticles for highly selective and sensitive detection of norfloxacin in milk[J]. Foods, 2023, 12(2): 285-285.
[22] GUO X X, YAO S, LI H, et al. Multi-functional magnetic molecular imprinting probe for visual detection of IgY antibodies[J]. Microchimica Acta, 2021, 188(11): 378.
[23] ZHOU Y, LIU A, LI Y, et al. Magnetic molecular imprinted polymers-based nanozyme for specific colorimetric detection of protocatechuic acid[J]. Coatings, 2023, 13(8): 1 374.
[24] 高婉茹, 李跑, 黄昭, 等. 磁性分子印迹纳米粒子对四环素的富集分离[J]. 食品研究与开发, 2019, 40(4): 173-182.
GAO W R, LI P, HUANG Z, et al. Enrichment andseprartion of tetracycline by magnetic molecularly imprinted polymers nanoparticles[J]. Food Research and Development, 2019, 40(4): 173-182.
[25] XIONG Y Z, CAO Y N, LUO L, et al. Synthesis, characterization and absorption evaluation of bifunctional monomer magnetic molecularly imprinted polymers nanoparticles for the extraction of 6-benzylaminopurine from vegetables[J]. Food Chemistry, 2022, 386: 132792.
[26] ZHANG X, YANG Q, LANG Y H, et al. The rationale of 3,3′,5,5′-tetramethylbenzidine (TMB) as the chromogenic substrate in colorimetric analysis[J]. Analytical Chemistry, 2020, 92(18): 12 400-12 406.
[27] 栗鑫, 罗磊, 熊蓥姿, 等. Fe3O4@COOH纳米酶比色检测食用纯植物油的过氧化值[J]. 食品科学, 2023, 44(24): 352-359.
LI X, LUO L, XIONG Y Z, et al. The colorimetric detection of peroxidation values for edible pure vegetable oils by the Fe3O4@COOH nanozyme[J]. Food Science, 2023, 44(24): 352-359.
[28] 杨培昕, 喻昌木, 杨敏, 等. 固载离子液体修饰Fe3O4纳米酶用于H2O2和葡萄糖的检测[J]. 食品科学, 2021, 42(20): 252-259.
YANG P X, YU C M, YANG M, et al. Immobilized ionic liquid modified Fe3O4 nanoenzyme for the detection of hydrogen peroxide and glucose in foods[J]. Food Science, 2021, 42(20): 252-259.
[29] DUAN W, WANG J L, PENG X M, et al. Rational design of trimetallic AgPt-Fe3O4 nanozyme for catalyst poisoning-mediated CO colorimetric detection[J]. Biosensors and Bioelectronics, 2023, 223: 115022.
[30] DUAN W, QIU Z W, CAO S F, et al. Pd-Fe3O4 Janus nanozyme with rational design for ultrasensitive colorimetric detection of biothiols[J]. Biosensors and Bioelectronics, 2022, 196: 113724.
[31] XIA F, SHI Q F, NAN Z D. Facile synthesis of Cu-CuFe2O4 nanozymes for sensitive assay of H2O2 and GSH[J]. Dalton Transactions, 2020, 49(36): 12 780-12 792.
[32] HUANG X, XIA F, NAN Z D. Fabrication of FeS2/SiO2 DMHSs and rapid determination of H2O2 and GSH as an artificial peroxidase[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46 539-46 548.