Abstract
[Objective] To improve the drying quality of pumpkins. [Methods] This study conducted experiments on hot air drying, vacuum drying, and combined hot air-vacuum drying, these drying characteristics were evaluated and compared based on unit energy consumption, rehydration ratio, and color difference indicators. Combining BP neural network model with genetic algorithm, combined with entropy weight and weighted scoring method, a multi-objective comprehensive optimization was carried out for the combined hot air-vacuum drying of pumpkins. [Results] Under the same conditions, the highest drying efficiency was hot air drying; And the findings revealed that at drying temperatures was 55 ℃, with a moisture content transition point of 30%, the combined drying method reduced the drying time by 52.63%, compared to vacuum drying. The lowest unit energy consumption was vacuum drying; The worst rehydration performance was hot air drying. The best color was vacuum drying. The optimal drying parameters determined by the genetic algorithm combined with a BP neural network model were a hot air drying temperature of 65 ℃, conversion point moisture content of 50%, and vacuum drying temperature of 56.050 9 ℃. Verification experiments demonstrated that the average relative errors between the genetic algorithm optimized values and the experimental values for unit energy consumption, rehydration ratio, and color difference were 2.5%, 5.53%, and 4.84%, respectively, all lower than 6%. [Conclusion] The combined hot air-vacuum drying of pumpkin integrates the advantages of both hot air drying and vacuum drying, and combined with BP neural network genetic algorithm model can optimize the process parameters for pumpkin hot air vacuum drying.
Publication Date
9-11-2024
First Page
183
Last Page
191,240
DOI
10.13652/j.spjx.1003.5788.2024.80217
Recommended Citation
Shaofeng, WU; Hua, QIANG; Xin, ZHANG; Yunjiao, BAI; and Shihui, WU
(2024)
"Process parameter optimization of pumpkin combined drying based on genetic algorithm,"
Food and Machinery: Vol. 40:
Iss.
7, Article 27.
DOI: 10.13652/j.spjx.1003.5788.2024.80217
Available at:
https://www.ifoodmm.cn/journal/vol40/iss7/27
References
[1] 郭玉萍. 南瓜粉的加工工艺及特性研究[D]. 厦门: 集美大学, 2019: 1-8.
GUO Y P. Study on processing technology and characteristics of pumpkin powder[D]. Xiamen: Jimei University, 2019: 1-8.
[2] 徐树来, 李柱刚, 李晓娟, 等. 我国南瓜加工现状、存在问题及发展对策[J]. 食品工业科技, 2023, 44(13): 434-439.
XU S L, LI Z G, LI X J, et al. The processing status, existing problems and development countermeasures of the pumpkin processing industry in China[J]. Science and Technology of Food Industry, 2023, 44(13): 434-439.
[3] 王晓龙. 南瓜面条加工工艺及储存条件对其品质影响研究[D]. 郑州: 河南工业大学, 2022: 1-8.
WANG X L. Research on the effect of processing technology and storage conditions of pumpkin noodles on quality[D]. Zhengzhou: Henan University of Technology, 2022: 1-8.
[4] 任广乾, 杨世康, 卞世杰, 等. 基于相关性和主成分分析评价南瓜的营养品质[J]. 中国瓜菜, 2023, 36(6): 37-42.
REN G Q, YANG S K, BIAN S J, et al. Evaluation of pumpkin nutrient quality based on correlation and principal component analysis[J]. China Cucurbitsand Vegetables, 2023, 36(6): 37-42.
[5] CHE Q, LU Y, BI J, et al. Quality assessment and variety classification of seed-used pumpkin by-products: potential values to deep processing[J]. Food Science & Nutrition, 2019, 7(12): 4 095-4 104.
[6] ONWUDE D I, HASHIM N, JANIUS R, et al. Color change kinetics and total carotenoid content of pumpkin as affected by drying temperature[J]. Italian Journal of Food Science, 2017, 29(29): 2 017-2 018.
[7] 代亚萍, 邓凯波, 郑宝东. 南瓜片太阳能—热泵联合干燥特性及动力学模型[J]. 福建农林大学学报(自然科学版), 2019, 48(2): 259-265.
DAI Y P, DENG K B, ZHENG B D. Drying characteristics and dynamic analysis of pumpkin slices using solar-assisted heat pump drying[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(2): 259-265.
[8] 汤尚文, 马雪伟, 于博, 等. 南瓜红外干燥模型及关键参数计算[J]. 食品与发酵工业, 2017, 43(1): 124-129.
TANG S W, MA X W, YU B, et al. Infrared radiation drying model and key parameters of pumpkin[J]. Food and Fermentation Industries, 2017, 43(1): 124-129.
[9] 王军, 程晶晶, 余垒. 南瓜片热风—微波联合干燥特性及品质评价[J]. 食品工业, 2016, 37(4): 84-88.
WANG J, CHENG J J, YU L. Characteristics of combined hot-air and microwave drying for pumpkin slice and quality evaluation[J]. The Food Industry, 2016, 37(4): 84-88.
[10] 欧阳梦云. 南瓜片热风干燥过程中色泽变化及美拉德反应机理研究[D]. 长沙: 湖南农业大学, 2021: 16-34.
OUYANG M Y. Research on color change and Maillard reaction mechanism of pumpkin slices during hot air drying[D]. Changsha: Hunan Agricultural University, 2021: 16-34.
[11] ANDO Y, OKUNISHI T, OKADOME H. Influences of blanching and freezing pretreatments on moisture diffusivity and quality attributes of pumpkin slices during convective air-drying[J]. Food & Bioprocess Technology, 2019, 12(11): 1 821-1 831.
[12] IGBOZULIKE A O, OYINLOYE G M, AMAMGBO N. Modelling of fluted pumpkin seed drying kinetics[J]. Agricultural Engineering International: CIGR Journal, 2020, 22(2): 272-278.
[13] BENSEDDIK A, BENAHMED-DJILALI A, AZZI A, et al. Effect of drying processes on the final quality of potimarron pumpkin (Cucurbita maxima) powders[J]. Journal of Dispersion Science & Technology, 2022, 43(1): 136-146.
[14] SABANCI S, TRKOGLU T, DIRIM S N. Determination of shrinkage characteristics of pumpkin discs during convection, microwave, and combined drying using computer-aided technique: image processing application[J]. Journal of Food Process Engineering, 2023, 46(8): 1-10.
[15] 黄敏, 甘婷, 易萍, 等. 芒果切片热风干燥特性及模型[J]. 食品与机械, 2024, 40(4): 179-186, 209.
HUANG M, GAN T, YI P, et al. Hot air drying characteristics and model of Mango slices[J]. Food & Machinery, 2024, 40(4): 179-186, 209.
[16] 李官丽, 吴秋月, 陈锡霞, 等. 干燥方式对油茶粉品质及挥发性风味物质的影响[J]. 食品与机械, 2024, 40(3): 210-216.
LI G L, WU Q Y, CHEN X X, et al. Effects of drying methods on the quality and volatile flavor compounds of oil tea powder[J]. Food & Machinery, 2024, 40(3): 210-216.
[17] 樊梦珂, 陈鹏枭, 刘烨, 等. 高水分小麦热风干燥后品质的变化[J]. 食品与机械, 2024, 40(2): 139-145, 191.
FAN M K, CHEN P X, LIU Y, et al. Study of quality changes in high moisture wheat after hot air drying[J]. Food & Machinery, 2024, 40(2): 139-145, 191.
[18] 盛韶阳, 吴敏, 胡纯秋, 等. 热风—真空复合工艺干燥玉米力学特性研究[J]. 农业机械学报, 2020, 51(S1): 476-482.
SHENG S Y, WU M, HU C Q, et al. Mechanical properties of maize kernel dried by hot-air-vacuum compound process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 476-482.
[19] 刘德成, 郑霞, 肖红伟, 等. 红枣片冷冻—红外组合干燥特性[J]. 食品与机械, 2023, 39(3): 128-135.
LIU D C, ZHENG X, XIAO H W, et al. Characteristics of freeze-infrared combined drying of jujube slices[J]. Food & Machinery, 2023, 39(3): 128-135.
[20] NING X, LEE J, HAN C. Drying characteristics and quality of red ginseng using far-infrared rays[J]. Journal of Ginseng Research, 2015, 39(4): 371-375.
[21] 赵红霞, 王应强, 马玉荷, 等. 微波干燥条件对杏脯干燥特性与品质的影响[J]. 食品与机械, 2023, 39(4): 123-129.
ZHONG H X, WANG Y Q, MA Y H, et al. Effects of different microwave drying conditions on drying characteristics and quality of preserved apricots[J]. Food & Machinery, 2023, 39(4): 123-129.
[22] 陈健凯, 林河通, 林艺芬, 等. 基于品质和能耗的杏鲍菇微波真空干燥工艺参数优化[J]. 农业工程学报, 2014, 30(3): 277-284.
CHEN J K, LIN H T, LIN Y F, et al. Optimized technology of Pleurotus eryngii by microwave-vacuum drying based on quality and energy consumption[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3): 277-284.
[23] 丁俊雄. 香菇热风干燥特性预测模型建立及其工艺参数优化研究[D]. 北京: 北京石油化工学院, 2021: 9-17.
DING J X. Study on the characteristics prediction model of hot-air drying mushrooms and optimization of drying process parameters[D]. Beijing: Beijing Institute of Petrochemical Technology, 2021: 9-17.
[24] 喻芬. 枸杞真空—压力脉动联合干燥工艺研究[D]. 南昌: 江西中医药大学, 2021: 6-23.
YU F. Research on the vacuum-pressure pulsation combined drying process of wolfberry[D]. Nanchang: Jiangxi University of Traditional Chinese Medicine, 2021: 6-23.
[25] 巨浩羽, 赵士豪, 赵海燕, 等. 光皮木瓜真空脉动干燥特性及神经网络模型[J]. 食品与机械, 2022, 38(3): 147-153.
JU H Y, ZHAO S H, ZHAO H Y, et al. Drying characteristics of Chaenomeles sinensis with vacuum pulsed drying technology based on BP neural network mode[J]. Food & Machinery, 2022, 38(3): 147-153.
[26] 曲文娟, 凡威, 马海乐, 等. 核桃滚筒催化红外—热风干燥试验及能耗分析[J]. 食品与机械, 2021, 37(5): 163-168, 193.
QU W J, FAN W, MA H L, et al. Experiment and energy consumption analysis of walnut drum catalytic infrared-hot air drying[J]. Food & Machinery, 2021, 37(5): 163-168, 193.
[27] 刘路路, 李可, 韦智江, 等. 基于响应面法和熵权法优化连翘叶中连翘酯苷A、连翘苷和芦丁提取工艺[J]. 食品工业科技, 2022, 43(2): 166-173.
LIU L L, LI K, WEI Z J, et al. Optimization of extraction process of forsythioside A, forsythin and rutin from forsythia suspensa leaves based on response surface methodology and entropy weight method[J]. Science and Technology of Food Industry, 2022, 43(2): 166-173.
[28] 王玉霞, 武晓玉, 夏鹏飞, 等. 基于熵权TOPSIS模型对经不同方法干燥的苦水玫瑰品质的综合评价[J]. 中成药, 2021, 43(5): 1 241-1 248.
WANG Y X, WU X Y, XIA P F, et al. Entropy-based TOPSIS model for comprehensive evaluation of quality of differently dried Rosasertata×Rosa rugosa[J]. Chinese Traditional Patent Medicine, 2021, 43(5): 1 241-1 248.
[29] 王玲, 田冰, 彭林, 等. 热风—微波联合干燥青花椒工艺优化[J]. 食品与发酵工业, 2019, 45(18): 176-182.
WANG L, TIAN B, PENG L, et al. Optimization of hot air-microwave combined drying of Zanthoxylum schinifolium[J]. Food and Fermentation Industries, 2019, 45(18): 176-182.
[30] 邓建猛, 王红军, 黎邹邹, 等. 基于高光谱技术的马铃薯外部品质检测[J]. 食品与机械, 2016, 32(11): 122-125, 211.
DENG J M, WANG H J, LI Z Z, et al. Detection of potato external quality based on hyperspectral technology[J]. Food & Machinery, 2016, 32(11): 122-125, 211.
[31] 丁国超, 施雪玲, 胡军. 基于CGA-BP神经网络的好氧堆肥曝气供氧量预测模型[J]. 农业工程学报, 2023, 39(7): 211-217.
DING G C, SHI X L, HU J. Prediction model of the aeration oxygen supply for aerobic composting using CGA-BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(7): 211-217.
[32] 郭利进, 乔志忠. 基于遗传算法优化BP神经网络的粮食温度预测研究[J]. 粮食与油脂, 2023, 36(1): 34-37.
GUO L J, QIAO Z Z. Study on grain temperature prediction based on genetic algorithm optimized BP neural network[J]. Cereals & Oils, 2023, 36(1): 34-37.
[33] 李艳肖, 黄晓玮, 邹小波, 等. 蚁群和遗传算法优化花茶花青素近红外光谱预测模型的比较[J]. 食品与生物技术学报, 2015, 34(6): 575-583.
LI Y X, HUANG X W, ZOU X B, et al. Optimization of NIR spectroscopy based on ant colony optimization and genetic algorithm for the anthocyanin content in scented tea[J]. Journal of Food Science and Biotechnology, 2015, 34(6): 575-583.
[34] LUKIC N L, BOIN-DAKIC M, GRAHOVAC J A, et al. Multi-objective optimization of microfiltration of baker’s yeast using genetic algorithm[J]. Acta Periodica Technologica, 2017(48): 211-220.
[35] 白竣文, 周存山, 蔡健荣, 等. 南瓜片真空脉动干燥特性及含水率预测[J]. 农业工程学报, 2017, 33(17): 290-297.
BAI J W, ZHOU C S, CAI J R, et al. Vacuum pulse drying characteristics and moisture content prediction of pumpkin slices[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 290-297.
[36] 徐成海. 真空干燥技术[M]. 北京: 化学工业出版社, 2011: 48-51.
XU C H. Vacuum drying technology[M]. Beijing: Chemical Industry Press, 2011: 48-51.
[37] 王武, 刘进杰, 方红美, 等. 南瓜片真空干燥过程失水特性的试验研究[J]. 合肥工业大学学报(自然科学版), 2002, 25(5): 786-789.
WANG W, LIU J J, FANG H M, et al. Experimental study of dehydrating properties of pumpkin chips in vacuum drying[J]. Journal of Hefei University of Technology(Natural Science), 2002, 25(5): 786-789.
[38] 张孙现. 鲍鱼微波真空干燥的品质特性及机理研究[D]. 福州: 福建农林大学, 2013: 83-89.
ZHANG S X. Study on the microwave vacuum drying quality characteristics and mechanism ofablane[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013: 83-89.
[39] 马先英, 赵世明, 林艾光. 不同干燥方法对胡萝卜复水性及品质的影响[J]. 大连水产学院学报, 2006(2): 158-161.
MA X Y, ZHAO S M, LIN A G. Effects of different drying methods on rehydration and quality of carrots[J]. Journal of Dalian Fisheries University, 2006(2): 158-161.
[40] 胡庆国, 张慜, 杜卫华, 等. 不同干燥方式对颗粒状果蔬品质变化的影响[J]. 食品与生物技术学报, 2006, 25(2): 28-32.
HU Q G, ZHANG M, DU W H, et al. Effect of different drying methods on the quality changes of the granular fruits and vegetables[J]. Journal of Food Science and Biotechnology, 2006, 25(2): 28-32.
[41] 张裕仁. 板枣热风—真空分段联合干燥的干燥动力学及工艺优化[D]. 南京: 南京农业大学, 2019: 25-36.
ZHANG Y R. Drying kinetics and process optimization of the persimmon combined hot air and vacuum drying[D]. Nanjing: Nanjing Agricultural University, 2019: 25-36.
[42] OUYANG M Y, CAO S, HUANG Y Q, et al. Phenolics and ascorbic acid in pumpkin (Cucurbita maxima) slices: effects of hot air drying and degradation kinetics[J]. Journal of Food Measurement and Characterization, 2021, 15: 247-255.
[43] 钟旭美, 陈铭中, 庄婕, 等. BP神经网络结合遗传算法优化玫瑰茄火龙果固体饮料工艺条件[J]. 食品与发酵工业, 2019, 45(19): 173-179.
ZHONG X M, CHEN M Z, ZHUANG J, et al. Optimization of solid beverage process of rosette and dragon fruit by BP neural network combined with genetic algorithms[J]. Food and Fermentation Industries, 2019, 45(19): 173-179.