•  
  •  
 

Corresponding Author(s)

李融(1983—),男,巢湖学院讲师,硕士。E-mail: lirong@chu.edu.cn

Abstract

Antibacterial peptides have unique antibacterial mechanisms different from antibiotics, which are safe and less likely to cause bacterial resistance. Antibacterial peptides have significant advantages and extremely broad application prospects, which have the potential to become one of the widely used antimicrobial substances in the food industry. Currently, Nisin is allowed as food preservative. However, the promotion and application of antimicrobial peptides are still limited by high production costs, single antibacterial activity, and poor stability. The use of compound preservative technology and coating preservation technology can effectively improve the antibacterial efficiency by combining antimicrobial peptides with other natural preservatives. In addition, recombinant expression technology is the most economically valuable and scientifically effective way to achieve large-scale production of antimicrobial peptides, and the stability of antimicrobial peptides can be achieved through artificial intelligence design and optimization of their structure. This review summarizes the current application status and biosynthesis research progress of antimicrobial peptides in the food industry, and puts forward thoughts and suggestions on the existing problems and research prospects.

Publication Date

9-11-2024

First Page

208

Last Page

215

DOI

10.13652/j.spjx.1003.5788.2024.60056

References

[1] 谢闰生, 李培骏, 蒋羽秋, 等. 抗菌肽偶联纳米银材料及其在医疗和食品领域的应用[J]. 食品与机械, 2024, 40(5): 219-226. XIE R S, LI P J, JIANG Y Q, et al. Antimicrobial peptide-coupled silvernano materials and their applications in medical and food fields[J]. Food & Machinery, 2024, 40(5): 219-226.
[2] 杨悦, 李燕, 王小方, 等. 抗菌肽及其在食物储藏与保鲜中的应用[J]. 食品与生物技术学报, 2021, 40(4): 9-16. YANG Y, LI Y, WANG X F, et al. Antimicrobial peptides and their applications in food storage and preservation[J]. Journal of Food Science and Biotechnology, 2021, 40(4): 9-16.
[3] ZEYA H L, SPITZNAGEL J K. Antibacterial and enzymic basic pro-teinsfrorm leukocyte lysosomes: separation and identification[J]. Science, 1963, 142(3 595): 1 085-1 087.
[4] BOMAN I L, MERRIFIELD R B, ZIMMERMANN R, et al. Chemical synthesis and enzymic processing of precursor forms of cecropins A and B[J]. Journal of Biological Chemistry, 1989, 264(10): 5 852-5 860.
[5] MITTA G, HUBERT F, NOL T, et al. Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilusgalloprovincialis[J]. European Journal of Biochemistry, 1999, 265(1): 71-78.
[6] ZOSLOFF M. Magainlns, a class of antimicrobial peptides from xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor[J]. Occupational & Environmental Medicine, 1988, 84(8): 5 449-5 453.
[7] FIDELIO G D, MAGGIO B, CUMAR F A. Interaction of myelin basic protein, melittin and bovine serum albumin with gangliosides, sulphatide and neutral glycosphingolipids in mixed monolayers[J]. Chemistry & Physics of Lipids, 1984, 35(3): 231-245.
[8] SMET K, CONTRERAS R. Human antimicrobial peptides: defensins, cathelicidins and histatins[J]. Biotechnology Letters, 2005, 27(18): 1 337-1 347.
[9] KAHLENBERG J M, KAPLAN M J. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease[J]. Journal of Immunology, 2013, 191(10): 4 895-4 901.
[10] 田野, 王贵锋, 张向前. 植物抗菌肽的研究进展及其应用[J]. 现代食品科技, 2017, 33(11): 285-291. TIAN Y, WANG G F, ZHANG X Q. Research progress and application of plant antimicrobial peptides[J]. Modern Food Science and Technology, 2017, 33(11): 285-291.
[11] SINGH A, DUCHE R T, WANDHARE A G, et al. Milk-derived antimicrobial peptides: overview, applications, and future perspectives[J]. Probiotics and Antimicrobial Proteins, 2023, 15(1): 44-62.
[12] 肖怀秋, 李玉珍, 林亲录, 等. 抗菌肽多靶点作用抑菌机理研究进展[J]. 食品与生物技术学报, 2022, 41(5): 11-19. XIAO H Q, LI Y Z, LIN Q L, et al. Advances in multiple targets mechanism of antimicrobial peptides[J]. Journal of Food Science and Biotechnology, 2022, 41(5): 11-19.
[13] MULLER A, ULM H, REDER-CHRIST K, et al. Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors[J]. Microbial Drug Resistance, 2012, 18(3): 261-270.
[14] HANEY E F, PETERSEN A P, LAU C K, et al. Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2013, 1 828(8): 1 802-1 813.
[15] PENG Z, XIONG T, HUANG T, et al. Factors affecting production and effectiveness, performance improvement and mechanisms of action of bacteriocins as food preservative[J]. Critical Reviews in Food Science and Nutrition, 2022, 63(33): 11-14.
[16] MOKOENA M P. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review[J]. Molecules, 2017, 22(8): 1 242-1 255.
[17] ROGERS L A, WHITTIER E O. Limiting factors in the lactic fermentation[J]. Journal of Bacteriology, 1928, 16(4): 211-229.
[18] MATTICK A T R, HIRSCH A. A powerful inhibitory substance produced by group N streptococci[J]. Nature, 1944, 154(3 913): 551.
[19] FIELD D, COTTER P, ROSS R P, et al. Bioengineering of the model lantibioticnisin[J]. Bioengineered, 2015, 6(4): 187-192.
[20] 胡瀚文, 余雪健, 李旭, 等. 壳聚糖/乳酸链球菌素复合抗菌膜的制备及其性能[J]. 食品与发酵工业, 2023, 49(11): 13-19. HU H W, YU X J, LI X, et al. Preparation and properties of chitosan/nisin composite antibacterial film[J]. Food and Fermentation Industries, 2023, 49(11): 13-19.
[21] WU M J, DONG Q L, YAN H, et al. Bacteriostatic potential of nisin and sesamol combination against Listeria monocytogenes in chilled raw tuna fillets[J]. LWT-Food Science and Technology, 2023, 183(5): 1-10.
[22] SHRESTHA S, ERDMANN J J, RIEMANN M, et al. Ready-to-eat egg products formulated with nisin and organic acids to control Listeria monocytogenes[J]. Journal of Food Protection, 2023, 86: 1-10.
[23] CHEN H, JI P C, QI Y H, et al. Inactivation of Pseudomonas aeruginosa biofilms by thymoquinone in combination with nisin[J]. Frontiers in Microbiology, 2023, 13(1): 1-17.
[24] 商立超, 赵凤春, 弓志青, 等. 抗坏血酸联合乳酸链球菌素复合涂膜保鲜采后双孢蘑菇研究[J]. 食品工业科技, 2022, 43(20): 346-351. SHANG L C, ZHAO F C, GONG Z Q, et al. Preservation of postharvest agaricusbisporus by VC/nisin composite coating[J]. Science and Technology of Food Industry, 2022, 43(20): 346-351.
[25] 李晨, 牛泽洁, 李文婕, 等. BTI和Nisin复合涂膜液对鲈鱼鱼糜的保鲜效果[J]. 食品研究与开发, 2021, 42(22): 8-13. LI C, LIU Z J, LI W J, et al. Preservation effect of composite coating liquid containing BTl and Nisin on Lateolabrax japonicus Surimi[J]. Food Research and Development, 2021, 42(22): 8-13.
[26] LIU J B, CHENG D K, ZHANG D J, et al. Incorporating ε-polylysine hydrochloride, tea polyphenols, nisin, and ascorbic acidinto edible coating solutions: effect on quality and shelf life of marinated eggs[J]. Food and Bioprocess Technology, 2022, 15(12): 2 683-2 696.
[27] WANG H, GUO L, LIU L, et al. Composite chitosan films prepared using nisin and Perillafrutescense essential oil and their use to extend strawberry shelf life[J]. Food Bioscience, 2021, 41(4): 1-10.
[28] CHEN J, ZHANG J M, LIU D Y, et al. Preparation, characterization, and application of edible antibacterial three-layer films based on gelatin-chitosan-corn starch-incorporated nisin[J]. Food Packaging and Shelf Life, 2022, 34(11): 1-11.
[29] NIAZ T, SHABBIR S, NOOR T, et al. Active composite packaging reinforced with nisin-loaded nano-vesicles for extended shelf life of chicken breast filets and cheese slices[J]. Food and Bioprocess Technology, 2022, 15(4): 1 284-1 298.
[30] MAVALIZADEH A, FAZLARA A, POUR M M, et al. The effect of separate and combined treatments of nisin, Rosmarinusofficinalis essential oil(nanoemulsion and freeform)and chitosan coating on the shelf life of refrigerated chicken fillets[J]. Journal of Food Measurement and Characterization, 2022, 16(6): 4 497-4 513.
[31] RODRIGUEZ J M, MARTINEZ M I, KOK J, et al. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria[J]. Critical Reviews in Food Science and Nutrition, 2002, 42(2): 92-121.
[32] 海旭冉, 吴海青, 程超, 等. 细菌素抑菌机制和性能改进及其应用的研究进展[J]. 中国食品添加剂, 2023, 34(11): 45-53. HAI X R, WU H Q, CHENG C, et al. Research progress on antibacterial mechanism, performance improvement and application of bacteriocins[J]. China Food Additives, 2023, 34(11): 45-53.
[33] YEHIA H M, ALKHURIJI A F, SAVVAIDIS I, et al. Bactericidal effect of nisin and reuterin on methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 25937[J]. Food Science and Technology, 2022, 42: 105321.
[34] YING J P, WU G, ZHANG Y M, et al. Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins[J]. Meat Science, 2023, 204(6): 1-22.
[35] NING Y, HAN P, MA J, et al. Characterization of brevilaterins, multiple antimicrobial peptides simultaneously produced by Brevibacilluslaterosporus S62-9, and their application in real food system[J]. Food Bioscience, 2021, 42(SC): 1-9.
[36] YING T T, WU P J, GAO L L, et al. Isolation and characterization of a new strain of Bacillus amyloliquefaciens and its effect on strawberry preservation[J]. LWT-Food Science and Technology, 2022, 165(6): 1-9.
[37] 徐宇辰, 励建荣, 李婷婷, 等. 抗菌肽Piscidin 1 PG/聚乳酸电纺纳米纤维膜的制备及其对海鲈鱼的保鲜作用[J]. 现代食品科技, 2021, 37(4): 102-109. XU Y C, LI J R, LI T T, et al. Preparation of antimicrobial peptide Piscidin 1 PG/polylactic acid electrospunnanofiber membrane and its preservation effect on sea bass[J]. Modern Food Science and Technology, 2021, 37(4): 102-109.
[38] 李若冰, 刘嘉鑫, 金日天, 等. 酒糟大黄鱼抗菌肽FAH34的抑菌活性及热稳定性[J]. 中国食品学报, 2023, 23(12): 247-254. LI R B, LIU J X, JIN R T, et al. Antibacterial activity, mechanism and thermal stability of antibacterial peptide FAH34 from distiller's grains larimichthyscrocea[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(12): 247-254.
[39] SHI Y A, LI Y F, YANG K, et al. A novel milk-derived peptide effectively inhibits Staphylococcus aureus: interferes with cell wall synthesis, peptidoglycan biosynthesis disruption reaction mechanism, and its application in real milk system[J]. Food Control, 2023, 144(9): 1-9.
[40] 王丽芳, 叶良, 谢忠稳, 等. 茶叶抗菌肽粗提物的抑菌活性及其对冷却肉保鲜的影响[J]. 浙江农业学报, 2022, 34(10): 2 268-2 276. WAN L F, YE L, XIE Z W, et al. Antibacterial activity of tea antimicrobial peptide extraction and its effect on preservation of chilled meat[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2 268-2 276.
[41] WANG X F, HAN M Y, ZOU L R, et al. Preparation and characterization of Pickering emulsion with directionally embedded antimicrobial peptide MOp2 and its preservation effect on grass carp[J]. Current Research in Food Science, 2023, 7(8): 1-10.
[42] 魏岱旭, 龚海伦, 张旭维. 抗菌肽的生物合成及医学应用[J]. 合成生物学, 2022, 3(4): 709-727. WEI D X, GONG H L, ZHANG X W. Biosynthesis of antimicrobial peptides and its medical application[J]. Synthetic Biology Journal, 2022, 3(4): 709-727.
[43] 杨金月, 刘璐, 何治江, 等. 厚壳贻贝抗菌肽myticusin-1的重组表达及功能分析[J]. 浙江海洋学院学报(自然科学版), 2022, 41(1): 15-22. YANG G Y, LIU L, HE Z J, et al. Recombinant expression and functional analysis of the antimicrobial peptide myticusin-1 of mytiluscoruscus[J]. Journal of Zhejiang Ocean University (Natural Science), 2022, 41(1): 15-22.
[44] ROCA P R, ADRIA L C, SAUBI C, et al. A new generation of recombinant polypeptides combines multiple protein domains for effective antimicrobial activity[J]. Microbial Cell Factories, 2020, 19(1): 1-7.
[45] PARK A R, KIM S W, KIM S Y, et al. Expression of antimicrobial peptide (AMP), cecropin B, in a fused form to SUMO tag with or without three-glycine linker in escherichia coli and evaluation of bacteriolytic activity of the purified AMP[J]. Probiotics and Antimicrobial Proteins, 2021, 13(5): 1 780-1 789.
[46] LIN Q, XIE K H, CHEN D, et al. Expression and functional characterization of a novel antimicrobial peptide: human beta-defensin 118[J]. Bio Med Research International, 2020(11): 1-10.
[47] LEE B C, TSAI J C, LIN C Y, et al. Using Bacillus subtilis as a host cell to express an antimicrobial peptide from the marine chordate Cionaintestinalis[J]. Marine Drugs, 2021, 19(2): 1-19.
[48] 李飞航, 武浩恒, 李宏, 等. 抗菌肽Cathelicidin-1真核表达及发酵液抑菌活性鉴定[J]. 热带生物学报, 2023, 14(3): 1-7. LI F H, WU H H, LI H, et al. Eukaryotic expression of Cathelicidin-1 and validation of its antimicrobial activity in the fermentation broth[J]. Journal of Tropical Biology, 2023, 14(3): 1-7.
[49] 谭强来, 曾臻, 许莉, 等. 牡蛎抗菌肽Molluscidin的密码子优化、重组毕赤酵母表达及抑菌活性[J]. 食品工业科技, 2022, 43(3): 106-113. TAN Q L, ZENG Z, XU L, et al. Optimization and recombinant expression of antimicrobial peptide Molluscidin in Pichiapastoris and its antibacterial activity[J]. Science and Technology of Food Industry, 2022, 43(3): 106-113.
[50] JIANG R, ZHANG P, WU X, et al. Expression of antimicrobial peptide Cecropin P1 in Saccharomyces cerevisiae and its antibacterial, antiviral activity in vitro[J]. Electronic Journal of Biotechnology, 2020, 50(12): 16-22.
[51] HADIATULLAH H, WANG H, LIU Y X, et al. Chlamydomonas reinhardtii-derived multimer Mytichitin-CB possesses potent antibacterial properties[J]. Process Biochemistry, 2020, 96: 21-29.
[52] LI A, HUANG R, WANG C, et al. Expression of anti-lipopolysaccharide factor isoform 3 in Chlamydomonas reinhardtii showing high antimicrobial activity[J]. Marine Drugs, 2021, 19(5): 1-13.
[53] TRACY A S, GREGORY B C, DORNA R L, et al. Positive charge patterning and hydrophobicity of membrane-active antimicrobial peptides as determinants of activity, toxicity, and pharmacokinetic stability[J]. Journal of Medicinal Chemistry, 2019, 62(13): 6 276-6 286.
[54] KAMYSZ E, SIKORSKA E, KARAFOVA A, et al. Synthesis, biological activity and conformational analysis of head-to-tail cyclic analogues of LL37 and histatin 5[J]. Journal of Peptide Science, 2012, 18(9): 560-566.
[55] LI W, LIN F, HUNG A, et al. Enhancing proline-rich antimicrobial peptide action by homodimerization: influence of bifunctionallinker[J]. Chem Sci, 2022, 13(8): 2 226-2 237.
[56] MOURTADA R, HERCE H D, YIN D J, et al. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice[J]. Nature Biotechnology, 2019, 37(10): 1 186-1 197.
[57] 何成霞. 天蚕素抗菌肽的融合表达及其在橙汁中的抑菌研究[D]. 成都: 成都大学, 2021: 57-58. HE C X. Fusion expression of cecropin A and its antibacterial activity in orange juice[D]. Chengdu: Chengdu University, 2021: 57-58.
[58] 陶雪菊. 人源抗菌肽LL-37在毕赤酵母中的表达及在牛奶和果汁中的保鲜应用[D]. 成都: 成都大学, 2023: 63-64. TAO X J. Expression of human-derived antimicrobial peptide LL-37 in Pichiapastoris and its application in milk and juice[D]. Chengdu: Chengdu University, 2023: 63-64.
[59] 谭小千. 鲢鱼重组Cystatin对冷藏乌鱼肉片保鲜作用的研究[D]. 雅安: 四川农业大学, 2022: 63-64. TAN X Q. Effects of silver carp recombinant Cystatin on preservation of frozen Mullet fillet[D]. Yaan: Sichuan Agricultural University, 2022: 63-64.
[60] DONG C M, XU L J, LU W T, et al. Antibacterial peptide PMAP-37(F34-R), expressed in Pichiapastoris, is effective against pathogenic bacteria and preserves plums[J]. Microbial Cell Factories, 2023, 22(1): 1-12.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.