•  
  •  
 

Corresponding Author(s)

严亮(1983—),男,普洱茶研究院研究员,博士。E-mail: yanliang@pecxy.com

Abstract

The extraction and purification methods of polysaccharides from edible fungi determine their structure, which in turn affects their biological activity, and is the basis of research on edible fungi polysaccharides. Some specific structural features make the biological activity of edible mushroom polysaccharides significantly enhanced. Therefore, researchers have used physical, biological and chemical methods to modify the molecular structure of edible mushroom polysaccharides to improve their biological activity. The review introduced the extraction, purification and structural modification methods of edible fungi polysaccharides. The advantages and disadvantages of extraction, purification of polysaccharides from edible fungi, and the effects of chemical modification on their structure and biological activity were summarized. The importance of appropriate extraction and purification methods for obtaining the target polysaccharides and the importance of chemical modification methods for changing the molecular structure and improving the functional properties and biological activities of polysaccharides from edible fungi were prospected.

Publication Date

9-11-2024

First Page

231

Last Page

240

DOI

10.13652/j.spjx.1003.5788.2023.81199

References

[1] IRENE R R, CRISTINA D A. The beneficial role of edible mushrooms in human health[J]. Current Opinion in Food Science, 2017, 14: 122-128.
[2] DARGE H F, ANDRGIE A T, TSAI H C, et al. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications[J]. International Journal of Biological Macromolecules, 2019, 133: 545-563.
[3] TIM L, CLAUDIA H, THOMAS H. Click chemistry with polysaccharides[J]. Macromolecular Rapid Communications, 2006, 27(3): 208-213.
[4] RUBIYA K, SACHIN K S, SHEETU W, et al. Therapeutic potential of mushrooms in diabetes mellitus: role of polysaccharides[J]. International Journal of Biological Macromolecules, 2020, 164: 1 194-1 205.
[5] LIANG Q X, ZHAO Q C, HAO X T, et al. The effect of flammulina velutipes polysaccharide on immunization analyzed by intestinal flora and proteomics[J]. Frontiers in Nutrition, 2022, 9: 841230.
[6] MWANGI R W, MACHARIA J M, WAGARA I N, et al. The antioxidant potential of different edible and medicinal mushrooms[J]. Biomedicine & Pharmacotherapy, 2022, 147: 112621.
[7] SANG T T, GUO C J, GUO D D, et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation[J]. Carbohydrate Polymers, 2021, 256: 117594.
[8] LUAN F, PENG X, ZHAO G, et al. Structural diversity and bioactivity of polysaccharides from medicinal mushroom Phellinus spp.: a review[J]. Food Chemistry, 2022, 397: 133731.
[9] DIEGO M, FHERNANDA R S, MARISOL V, et al. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes[J]. Journal of Functional Foods, 2019, 60: 103446.
[10] SAETANG N, RATTANAPOT T, MANMAI N, et al. Effect of hot water extraction process on schizophyllan from split gill mushroom[J]. Biomass Conversion and Biorefinery, 2024, 14(1): 1 017-1 026.
[11] WANG Y F, JIA J X, REN X J, et al. Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom[J]. International Journal of Biological Macromolecules, 2018, 120: 1 760-1 769.
[12] SAKDASRI W, ARNUTPONGCHAI P, PHONSAVAT S, et al. Pressurized hot water extraction of crude polysaccharides, β-glucan, and phenolic compounds from dried gray oyster mushroom[J]. LWT-Food Science and Technology, 2022, 168: 113895.
[13] GABRIELE B, JANI T, JANI R, et al. Structural investigation of cell wall polysaccharides extracted from wild Finnish mushroom Craterellus tubaeformis (Funnel Chanterelle) [J]. Food Chemistry, 2019, 301: 125255.
[14] JHONATAS R B, MAURICIO M S F, LUIZA H S M, et al. Polysaccharides of mushroom Pleurotus spp.: new extraction techniques, biological activities and development of new technologies[J]. Carbohydrate Polymers, 2020, 229: 115550.
[15] 王文丽, 张金玲, 魏亚宁, 等. 天然多糖提取、纯化及生物活性研究进展[J]. 食品工业科技, 2022, 43(22): 470-480. WANG W L, ZHANG J L, WEI Y N, et al. Extraction, purification and bioactivity of natural polysaccharides: a review[J]. Science and Technology of Food Industry, 2022, 43(22): 470-480.
[16] 张恒, 郑俏然, 李敏. 响应面法优化超声波辅助提取鸡枞菌多糖及其抗氧化活性研究[J]. 食品与发酵科技, 2017, 53(2): 13-18, 121. ZHANG H, ZHENG Q R, LI M.Optimization of ultrasound assisted extraction of collybia albuminosa polysaccharides and its antioxidative activity by response surface method[J]. Food and Fermentation Science & Technology, 2017, 53(2): 13-18, 121.
[17] ALZORQI I, SUDHEER S, LU T J, et al. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity[J]. Ultrasonics Sonochemistry, 2017, 35: 531-540.
[18] 王思芦. 鸡枞菌多糖的免疫调节作用及其注射液的研制[D]. 雅安: 四川农业大学, 2012: 35-45. WANG S L. Study on immunological regulation effect and injection of polysaccharides from Termitomyces albuminosus (Berk.) Heim[D]. Ya'an: Sichuan Agricultural University, 2012: 35-45.
[19] 李湘利, 刘静, 邓英立, 等. 超声—微波协同提取鸡枞菌多糖的工艺优化及抗氧化性[J]. 食品科技, 2022, 47(1): 184-189. LI X L, LIU J, DENG Y L, et al. Optimization of ultrasonic-microwave extraction and antioxidant activity of polysaccharides from Termitomyces albuminosus[J]. Food Science and Technology, 2022, 47(1): 184-189.
[20] XU N, SUN Y H, GUO X L, et al. Optimization of ultrasonic-microwave synergistic extraction of polysaccharides from Morchella conica[J]. Journal of Food Processing and Preservation, 2018, 42(2): e13423.
[21] ZHENG Y, CUI J, CHEN A H, et al. Optimization of ultrasonic-microwave assisted extraction and hepatoprotective activities of polysaccharides from Trametes orientalis[J]. Molecules, 2019, 24(1): 147.
[22] ALICIA G R, FHERNANDA R S, DIEGO M, et al. Strengths and weaknesses of the aniline-blue method used to test mushroom (1→3)-β-d-glucans obtained by microwave-assisted extractions[J]. Carbohydrate Polymers, 2019, 217: 135-143.
[23] YIN X L, YOU Q H, ZHOU X H. Complex enzyme-assisted extraction, purification, and antioxidant activity of polysaccharides from the button mushroom, Agaricus bisporus (Higher Basidiomycetes) [J]. International Journal of Medicinal Mushrooms, 2015, 17(10): 987-996.
[24] ZHANG J, WEN C, GU J, et al. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes[J]. International Journal of Biological Macromolecules, 2019, 123: 1 002-1 011.
[25] 孙林超. 超声辅助亚临界水提取香菇多糖工艺的研究[J]. 粮食与油脂, 2019, 32(4): 81-84. SUN L C. Study on ultrasonic assisted subcritical water extraction of lentinan from Lentinus edodes[J]. Cereals & Oils, 2019, 32(4): 81-84.
[26] LICETH R H L, MARIA J G M, CATALINA F A, et al. Autohydrolysis of Lentinus edodes for obtaining extracts with antiradical properties[J]. Foods, 2020, 9(1): 74.
[27] SUN Y J, HE H Q, WANG Q, et al. A review of development and utilization for edible fungal polysaccharides: extraction, chemical characteristics, and bioactivities[J]. Polymers, 2022, 14(20): 4 454.
[28] XUE D, MOHAMMED M F. Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus) [J]. Innovative Food Science & Emerging Technologies, 2015, 29: 178-186.
[29] LIU C. Extraction, separation and purification of acidic polysaccharide from Morchella esculenta by high voltage pulsed electric field[J]. International Journal Bioautomation, 2019(2): 193-202.
[30] JHONATAS R B, MAURICIO M S F, OLIVEIRA C L, et al. Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom Pleurotus ostreatus using binary system with hot water and supercritical CO2[J]. Food Chemistry, 2020, 330: 127173.
[31] LIN Y Y, ZENG H Y, WANG K, et al. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: process optimization, structure characterization and antioxidant activity[J]. International Journal of Biological Macromolecules, 2019, 136: 305-315.
[32] YIN C M, FAN X Z, FAN Z, et al. Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity[J]. International Journal of Biological Macromolecules, 2018, 111: 446-454.
[33] YUE C H, ZANG X D, CHEN C, et al. Purification, characterization and in vitro bile salt-binding capacity of polysaccharides from Armillaria mellea mushroom[J]. Czech Journal of Food Sciences, 2019, 37(1): 51-56.
[34] 隋志方, 刘延奇, 秦令祥. 复合酶协同超高压法提取黑木耳多糖的工艺优化[J]. 食品研究与开发, 2021, 42(24): 107-113. SUI Z F, LIU Y Q, QIN L X. Extraction optimization of Auricularia auricular polysaccharides by a compound enzyme-assisted ultra-high pressure method[J]. Food Research and Development, 2021, 42(24): 107-113.
[35] GOVINDAN S, JAYABAL A, SHANMUGAM J, et al. Antioxidant and hepatoprotective effects of Hypsizygus ulmarius polysaccharide on alcoholic liver injury in rats[J]. Food Science and Human Wellness, 2021, 10(4): 523-535.
[36] ZENG X T, LI P Y, CHEN X, et al. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides[J]. International Journal of Biological Macromolecules, 2019, 126: 867-876.
[37] LI S F, WANG A J, LIU L N, et al. Effect of deproteinization methods on the antioxidant activity of polysaccharides extracted from Lentinus edodes stipe[J]. Journal of Food Measurement and Characterization, 2019, 13(2): 1 382-1 389.
[38] WANG Z C, ZHANG H R, SHEN Y B, et al. Characterization of a novel polysaccharide from Ganoderma lucidum and its absorption mechanism in Caco-2 cells and mice model[J]. International Journal of Biological Macromolecules, 2018, 118: 320-326.
[39] 李欣欣, 李文香. 桦褐孔菌多糖的分离纯化及其抗氧化活性测定[J]. 食品工业科技, 2021, 42(11): 192-197. LI X X, LI W X. Isolation, purification and antioxidant activity of Inonotus obliquus polysaccharide[J]. Science and Technology of Food Industry, 2021, 42(11): 192-197.
[40] HUANG Q, LIU Y, DENG Y, et al. Preparation and antioxidant activity in vitro of fermented Tremella fuciformis extracellular polysaccharides[J]. Fermentation, 2022, 8(11): 616.
[41] ZHOU R, WANG Y T, LI C, et al. A preliminary study on preparation, characterization, and prebiotic activity of a polysaccharide from the edible mushroom Ramaria flava[J]. Journal of Food Biochemistry, 2022, 46(9): 14371.
[42] TANG W, LIU D, YIN J Y, et al. Consecutive and progressive purification of food-derived natural polysaccharide: based on material, extraction process and crude polysaccharide[J]. Trends in Food Science & Technology, 2020, 99: 76-87.
[43] ANDREA C R, FHERNANDA R S, MARCELLO I. d-Glucans from edible mushrooms: a review on the extraction, purification and chemical characterization approaches[J]. Carbohydrate Polymers, 2015, 117: 753-761.
[44] HU X T, GOFF H D. Fractionation of polysaccharides by gradient non-solvent precipitation: a review[J]. Trends in Food Science & Technology, 2018, 81: 108-115.
[45] RAM S F, FARZIN Z A. The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace[J]. International Journal of Food Science & Technology, 2007, 42(10): 1 177-1 187.
[46] WANG Y X, ZHANG T, XIN Y, et al. Comprehensive evaluation of alkali-extracted polysaccharides from Agrocybe cylindracea: comparison on structural characterization[J]. Carbohydrate Polymers, 2021, 255: 117502.
[47] WANG Y X, YIN J Y, ZHANG T, et al. Utilizing relative ordered structure theory to guide polysaccharide purification for structural characterization[J]. Food Hydrocolloids, 2021, 115: 106603.
[48] INAMUDDI N. Applications of ion exchange materials in biomedical industries[M]. Cham: Springer International Publishing, 2019: 125-137.
[49] CHEN Y J, JIANG X, XIE H Q, et al. Structural characterization and antitumor activity of a polysaccharide from ramulus mori[J]. Carbohydrate Polymers, 2018, 190: 232-239.
[50] HAN K, JIN C, CHEN H J, et al. Structural characterization and anti-A549 lung cancer cells bioactivity of a polysaccharide from Houttuynia cordata[J]. International Journal of Biological Macromolecules, 2018, 120: 288-296.
[51] ZHAO S, ZHANG S M, ZHANG W W, et al. First demonstration of protective effects of purified mushroom polysaccharide-peptides against fatty liver injury and the mechanisms involved[J]. Scientific Reports, 2019, 9(1): 13725.
[52] ZHENG J L, ZHANG T T, FAN J, et al. Protective effects of a polysaccharide from Boletus aereus on S180 tumor-bearing mice and its structural characteristics[J]. International Journal of Biological Macromolecules, 2021, 188: 1-10.
[53] THIMMARAJU A, GOVINDAN S. Novel studies of characterization, antioxidant, anticoagulant and anticancer activity of purified polysaccharide from Hypsizygus ulmarius mushroom[J]. Bioactive Carbohydrates and Dietary Fibre, 2022, 27: 100308.
[54] 段语嫣, 冯杰, 刘艳芳, 等. 灵芝液态发酵胞内外多糖结构特征及其活性研究进展[J]. 微生物学通报, 2023, 50(6): 2 721-2 737. DUAN Y Y, FENG J, LIU Y F, et al. Structural characteristics and biological activity of polysaccharides produced by liquid fermentation of Ganoderma: a review[J]. Microbiology China, 2023, 50(6): 2 721-2 737.
[55] SONG S, LIU X Y, ZHAO B T, et al. Effects of Lactobacillus plantarum fermentation on the chemical structure and antioxidant activity of polysaccharides from Bulbs of Lanzhou Lily[J]. ACS Omega, 2021, 6(44): 29 839-29 851.
[56] WANG Q, SHENG X J, SHI A M, et al. β-Glucans: relationships between modification, conformation and functional activities[J]. Molecules, 2017, 22(2): 257.
[57] WANG Z J, XIE J H, SHEN M Y, et al. Sulfated modification of polysaccharides: synthesis, characterization and bioactivities[J]. Trends in Food Science & Technology, 2018, 74: 147-157.
[58] RIZKYANA A D, HO T C, ROY V C, et al. Sulfation and characterization of polysaccharides from Oyster mushroom (Pleurotus ostreatus) extracted using subcritical water[J]. The Journal of Supercritical Fluids, 2022, 179: 105412.
[59] 张迪, 王宏雨, 林衍铨. 绣球菌水溶性多糖的硫酸化修饰及其对鼠脾淋巴细胞体外刺激活性[J]. 中国食用菌, 2020, 39(11): 83-88. ZHANG D, WANG H Y, LIN Y Q. Sulfation modification of water soluble polysaccharide from Sparassis latifolia and its stimulating activity on rat spleen lymphocytes in vitro[J]. Edible Fungi of China, 2020, 39(11): 83-88.
[60] 李梦圆, 徐金龙, 刘咏, 等. 黄山花菇多糖硫酸化修饰条件的优化及修饰产物抗肿瘤活性研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(7): 992-995, 1 008. LI M Y, XU J L, LIU Y, et al. Optimization of sulfated modification conditions of polysaccharides from Huangshan floral mushroom and determination of antitumor activity of modified products[J]. Journal of Hebei University of Technology (Natural Science), 2020, 43(7): 992-995, 1 008.
[61] 唐瑜婉, 张月巧, 李瑶, 等. 硫酸化羊肚菌多糖调控胆固醇代谢作用[J]. 食品科学, 2019, 40(21): 136-142. TANG Y W, ZHANG Y Q, LI Y, et al. Regulation of cholesterol metabolism by sulfated polysaccharides from Morchella angusticeps Peck[J]. Food Science, 2019, 40(21): 136-142.
[62] GUNASEKARAN S, GOVINDAN S, RAMANI P. Sulfated modification, characterization and bioactivities of an acidic polysaccharide fraction from an edible mushroom Pleurotus eous (Berk.) Sacc.[J]. Heliyon, 2021, 7(1): e05964.
[63] LIU Y T, YOU Y X, LI Y W, et al. Characterization of carboxymethylated polysaccharides from Catathelasma ventricosum and their antioxidant and antibacterial activities[J]. Journal of Functional Foods, 2017, 38: 355-362.
[64] LIU W, HU C, LIU Y M, et al. Preparation, characterization, and α-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai[J]. International Journal of Biological Macromolecules, 2017, 99: 454-464.
[65] XIE L M, SHEN M Y, HONG Y Z, et al. Chemical modifications of polysaccharides and their anti-tumor activities[J]. Carbohydrate Polymers, 2020, 229: 115436.
[66] WANG Z J, XIE J H, SHEN M Y, et al. Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation[J]. Carbohydrate Polymers, 2016, 136: 988-994.
[67] ZHANG X, LIU J X, WANG X, et al. Structure characterization and antioxidant activity of carboxymethylated polysaccharide from Pholiota nameko[J]. Journal of Food Biochemistry, 2022, 46(7): e14121.
[68] 周际松, 汪芷玥, 汤凯, 等. 羧甲基化茯苓多糖的抗氧化性分析[J]. 中国食品添加剂, 2020, 31(7): 120-125. ZHOU J S, WANG Z Y, TANG K, et al. Antioxidant analysis of carboxymethylated Poria cocos[J]. China Food Additives, 2020, 31(7): 120-125.
[69] 赵迪. 黑木耳多糖对炎性肠病的预防作用及其化学修饰[D]. 上海: 华东理工大学, 2021: 44-55. ZHAO D. The Preventive effect of Auricularia auricular-judae (Bull.) polysaccharide against IBD and its modification[D]. Shanghai: East China University of Science and Technology, 2021: 44-55.
[70] 别蒙, 谢笔钧, 孙智达. 不同取代度水溶性羧甲基茯苓多糖的制备、结构表征及体外抑菌活性[J]. 食品科学, 2020, 41(12): 67-76. BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science, 2020, 41(12): 67-76.
[71] 陈玥彤, 张闪闪, 李文意, 等. 黑木耳多糖的磷酸化修饰、结构表征及体外降糖活性[J]. 食品科学, 2022, 43(8): 29-35. CHEN Y T, ZHANG S S, LI W Y, et al. Structural characterization and hypoglycemic effect in vitro of phosphorylated Auricularia auriculata polysaccharide[J]. Food Science, 2022, 43(8): 29-35.
[72] 于方园, 胡淼, 门雨薇, 等. 桦褐孔菌多糖磷酸化修饰工艺研究[J]. 食品研究与开发, 2022, 43(12): 133-138. YU F Y, HU M, MEN Y W, et al. Phosphorylation modification process of Inonotus obliquus polysaccharides[J]. Food Research and Development, 2022, 43(12): 133-138.
[73] LI H P, FENG Y B, SUN W X, et al. Antioxidation, anti-inflammation and anti-fibrosis effect of phosphorylated polysaccharides from Pleurotus djamor mycelia on adenine-induced chronic renal failure mice[J]. International Journal of Biological Macromolecules, 2021, 170: 652-663.
[74] 廖兵武. 猴头菇多糖及其磷酸化衍生物对GES-1细胞损伤的保护作用研究[D]. 广州: 华南理工大学, 2021: 79-104. LIAO W B. Astudy on protective effects of polysaccharide from Hericium erinaceus and its phosphorylated derivatives against injured GES-1 cells[D]. Guangzhou: South China University of Technology, 2021: 79-104.
[75] DUAN Z, ZHANG Y, ZHU C P, et al. Structural characterization of phosphorylated Pleurotus ostreatus polysaccharide and its hepatoprotective effect on carbon tetrachloride-induced liver injury in mice[J]. International Journal of Biological Macromolecules, 2020, 162: 533-547.
[76] 路垚, 杨琳燕, 朱清杰, 等. 磷酸化姬松茸多糖制备、安全性及抑菌性研究[J]. 华北农学报, 2020, 35(S1): 371-377. LU Y, YANG L Y, ZHU Q J, et al. Research on preparation, safety and antibacterial activity of phosphorylated Agaricus blazei Murrill polysaccharide[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(S1): 371-377.
[77] HITRI K, KUTTEL M M, BENEDETTO G D, et al. O-acetylation of typhoid capsular polysaccharide confers polysaccharide rigidity and immunodominance by masking additional epitopes[J]. Vaccine, 2019, 37(29): 3 866-3 875.
[78] LI H P, ZHAO H J, GAO Z, et al. The antioxidant and anti-aging effects of acetylated mycelia polysaccharides from Pleurotus djamor[J]. Molecules, 2019, 24(15): 2 698.
[79] 李顺峰, 许方方, 崔国梅, 等. 不同纯化程度香菇柄多糖的乙酰化修饰及降血糖活性[J]. 食品科学技术学报, 2022, 40(6): 127-133. LI S F, XU F F, CUI G M, et al. Acetylation modification and hypoglycemic activity of Lentinus edodes stipe polysaccharide with different purification degrees[J]. Journal of Food Science and Technology, 2022, 40(6): 127-133.
[80] PENG Y Y, ZHANG J H, YANG H L, et al. Acetylation modification and antioxidant activity of polysaccharides from Agrocybe cylindracea[J]. Journal of Food Measurement and Characterization, 2022, 16(3): 1 911-1 919.
[81] REN Y Y, SUN P P, JI Y P, et al. Carboxymethylation and acetylation of the polysaccharide from Cordyceps militaris and their α-glucosidase inhibitory activities[J]. Natural Product Research, 2020, 34(3): 369-377.
[82] 邓婕, 牟璐, 童宇航, 等. 硒多糖的制备、结构表征及抗氧化活性的研究进展[J]. 食品科技, 2022, 47(10): 8-15. DENG J, MOU L, DONG Y H, et al. Research progress in preparation, structure characterization and antioxidant activity of selenium polysaccharides[J]. Food Science and Technology, 2022, 47(10): 8-15.
[83] SIMSEK M, ASIYANBI-HAMMED T T, RASAQ N, et al. Progress in bioactive polysaccharide-derivatives: a review[J]. Food Reviews International, 2023, 39(3): 1 612-1 627.
[84] 古佩娴, 尹惠双, 胡坤, 等. 硒化猴头菇多糖的制备、结构表征及抗增殖活性[J]. 食品科学, 2022, 43(22): 68-73. GU P X, YIN H S, HU K, et al. Preparation, structural characterization and anti-proliferation activity of selenized Hericium erinaceus polysaccharide[J]. Food Science, 2022, 43(22): 68-73.
[85] LI Q, ZHU L F, QI X P, et al. Immunostimulatory and antioxidant activities of the selenized polysaccharide from edible Grifola frondosa[J]. Food Science & Nutrition, 2022, 10(4): 1 289-1 298.
[86] 林怡辰. 黑木耳多糖硒对酒精性肝损伤的预防作用及其机制探究[D]. 福州: 福建农林大学, 2022: 30-77. LIN Y C. Preventive effect of Auricularia auricula Selenium polysaccharide on alcoholic liver injury and its mechanism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2022: 30-77.
[87] DONG Z, DONG G, LAI F R, et al. Purification and comparative study of bioactivities of a natural selenized polysaccharide from Ganoderma lucidum mycelia[J]. International Journal of Biological Macromolecules, 2021, 190: 101-112.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.