•  
  •  
 

Corresponding Author(s)

林津(1988—),女,湖北省食品质量安全监督检验研究院高级工程师,硕士。E-mail:524153439@qq.com

Abstract

[Objective] A method for the simultaneous determination of arsenate [As(Ⅲ)], Arsenate [As(Ⅴ)], monomethylarsenate (MMA), dimethylarsenate (DMA), Arsine betaine (AsB), methyl-selenocysteine (MeSeCys) and selenomide in food was developed by high performance liquid phase inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and a total of 10 kinds of arsenic and selenium element forms of As and Se, including acid (SeMet), selenocysteine (SeCys2), selenite [Se(Ⅳ)] and selenate \. [Methods] Taking selenium rich rice as the research object, the best extraction method was determined by comparing different extraction methods and different kinds of enzymes. Moreover, different chromatographic columns, mobile phase composition, mobile phase pH, mobile phase flow, mobile phase methanol content and column temperature were compared to determine the best extraction and separation conditions. [Results] The optimal separation conditions were using Aglient ZORBAX SB-Aq chromatographic column with 20 mmol/L citric acid + 5 mmol/L sodium hexane sulfonate + 4% methanol as the mobile phase gradient with pH values of 4.0 and 6.0 respectively. Elution was performed at a flow rate of 1.0 mL/min, and inductively coupled plasma mass spectrometry (ICP-MS) was detected using HEHe mode. The optimal extraction condition is Tris-HCl (pH 7.5) buffer solution adding 15 mg proteinase K and 15 mg proteinase E. This method can completely separate 10 different forms of arsenic and selenium within 5 minutes. In the range of 0~50 μg/L, the linear relationship between the forms of each element is good, and the correlation coefficient R>0.999 5. The detection limits of As(Ⅴ), MMA, As(Ⅲ), DMA, AsB, Se(Ⅵ), Se(Ⅳ), SeCys2, MeSeCys and SeMet are 0.10, 0.10, 0.12, 0.14, 0.22, 0.15, 0.15, 0.18, 0.12, 0.15 μg/L respectively. The spiked recovery rate ranged from 76.0% to 104.2%, and the relative standard deviation ranged from 1.1% to 8.5%. [Conclusion] This method is simple, fast, highly sensitive and fully meets the requirements for accurate quantitative analysis of arsenic and selenium speciation in selenium-rich foods.

Publication Date

9-11-2024

First Page

43

Last Page

52

DOI

10.13652/j.spjx.1003.5788.2023.81287

References

[1] SCHMIDT L, LANDERO J A, NOVO D L R, et al. A feasible method for As speciation in several types of seafood by LC-ICP-MS/MS[J]. Food Chemistry, 2018, 255: 340-347.
[2] CAMURATI J R, SALOMONE V N. Arsenic in edible macroalgae: an integrated approach[J]. Journal of Toxicology and Environmental Health B, 2020, 23(1): 1-12.
[3] LUVONGA C, RIMMER C A, YU L L, et al. Analytical methodologies for the determination of organoarsenicals in edible marine species: a review[J]. Journal of Agricultural and Food Chemistry, 2020, 68(4): 943-960.
[4] 李乾玉, 姚晓慧, 刘丽萍, 等. 高效液相色谱—电感耦合等离子体质谱法分析研究西兰花中硒形态[J]. 岩矿测试, 2023, 42(3): 523-535. LI Q Y, YAO X H, LIU L P, et al. Analysis and study of selenium forms in broccoli by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Testing, 2023, 42(3): 523-535.
[5] 陆奕娜, 张林田, 魏建华, 等. 高效液相色谱—电感耦合等离子体质谱法同时测定食品中7种硒形态[J]. 分析科学学报, 2021, 37(1): 69-74. LU Y N, ZHANG L T, WEI J H, et al. Simultaneous determination of seven selenium forms in food by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2021, 37(1): 69-74.
[6] THEUNIS M, NAESSENS T, PEETERS L, et al. Optimization and validation of analytical RP-HPLC methods for the quantification of glucosinolates and isothiocyanates in Nasturtium officinale R. Br and Brassica oleracea[J]. LWT-Food Science and Technology, 2022, 165: 1-8.
[7] 王铁良, 周晓华, 刘冰杰, 等. 高效液相色谱—氢化物发生—原子荧光光谱联用技术测定富硒香菇中的硒形态[J]. 食品科技, 2020, 45(10): 284-288, 294. WANG T L, ZHOU X H, LIU B J, et al. Determination of selenium forms in selenium-rich shiitake mushrooms using high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry technology[J]. Food Science and Technology, 2020, 45(10): 284-288, 294.
[8] 刘为, 尹金晶, 吴慕慈, 等. 富硒农产品中硒代氨基酸形态及其在不同蛋白组分中的分布[J]. 食品与机械, 2022, 38(6): 45-51, 190. LIU W, YIN J J, WU M C, et al. Forms of selenoamino acids in selenium-rich agricultural products and their distribution in different protein components[J]. Food & Machinery, 2022, 38(6): 45-51, 190.
[9] XIE J, NIU X D, HE K Q, et al. Arsenic and selenium distribution and speciation in coal and coal combustion by-products from coal-fired power plants[J]. Fuel, 2021, 292: 120228.
[10] 刘文政, 贾亚琪, 周贻兵, 等. 超声提取结合HPLC-ICP-MS联用测定富硒山茶油中的硒形态[J]. 中国粮油学报, 2023, 38(9): 197-203. LIU W Z, JIA Y Q, ZHOU Y B, et al. Determination of selenium forms in selenium-rich camellia oil by ultrasonic extraction combined with HPLC-ICP-MS[J]. Chinese Journal of Cereals and Oils Association, 2023, 38(9): 197-203.
[11] 刘文政, 周贻兵, 林野, 等. 高效液相色谱—电感耦合等离子体质谱联用技术测定富硒鸡蛋中5种硒形态[J]. 微量元素与健康研究, 2022, 39(4): 49-51. LIU W Z, ZHOU Y B, LIN Y, et al. Determination of five forms of selenium in selenium-enriched eggs by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Trace Elements and Health Research, 2022, 39(4): 49-51.
[12] 刘志江, 金文英, 党明岩, 等. 气相色谱—质谱联用技术在砷、硒、汞和铅形态分析中的应用[J]. 冶金分析, 2011, 31(6): 34-42. LIU Z J, JIN W D, DANG M Y, et al. Application of gas chromatography-mass spectrometry technology in speciation analysis of arsenic, selenium, mercury and lead[J]. Metallurgical Analysis, 2011, 31(6): 34-42.
[13] 苑春刚, 江万平, 祝涛, 等. 在线捕集分离联用技术对食品调料中砷形态分析方法研究[J]. 光谱学与光谱分析, 2014(8): 2 259-2 263. YUAN C G, JIANG W P, ZHU T, et al. Research on the speciation analysis of arsenic in food seasonings using online capture and separation technology[J]. Spectroscopy and Spectral Analysis, 2014(8): 2 259-2 263.
[14] 任召珍, 张丽静, 曾海英, 等. ICP-MS测定海藻中16种元素及LC-AFS砷形态分析[J]. 中国果菜, 2023, 43(7): 29-36. REN Z Z, ZHANG L J, ZENG H Y, et al. Determination of 16 elements in seaweed by ICP-MS and analysis of arsenic speciation by LC-AFS[J]. Chinese Fruits and Vegetables, 2023, 43(7): 29-36.
[15] 李康, 李丽敏, 程益清, 等. 基于HPLC-ICP-MS的海螵蛸中不同砷形态含量及其转移率研究[J]. 分析测试学报, 2023, 42(8): 1 000-1 006. LI K, LI L M, CHENG Y Q, et al. Study on the content and transfer rate of different arsenic forms in sea octopus based on HPLC-ICP-MS[J]. Journal of Analytical Testing, 2023, 42(8): 1 000-1 006.
[16] 刘正华, 李忠海. HPLC-AFS法测定水产品中4种砷形态[J]. 食品与机械, 2023, 39(8): 66-70. LIU Z H, LI Z H. Determination of four arsenic forms in aquatic products by HPLC-AFS method[J]. Food & Machinery, 2023, 39(8): 66-70.
[17] 唐克纯, 何庆, 曾议霆, 等. 高效液相色谱—电感耦合等离子体质谱法分析食用菌中6种砷形态及其分布特征[J]. 化学分析计量, 2023, 32(2): 13-19. TANG K C, HE Q, ZENG Y T, et al. Analysis of six arsenic forms and distribution characteristics in edible fungi by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Metrology, 2023, 32(2): 13-19.
[18] 李倩, 刘兴勇, 陈兴连, 等. 超声波辅助酶提取结合高效液相色谱—电感耦合等离子体质谱法测定富硒蔬菜中硒形态[J]. 食品与发酵工业, 2024, 50(2): 306-311. LI Q, LIU X Y, CHEN X L, et al. Determination of selenium forms in selenium-rich vegetables by ultrasonic-assisted enzyme extraction combined with high-performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Food and Fermentation Industry, 2024, 50(2): 306-311.
[17] 熊珺, 覃毅磊, 龚亮, 等. 超声辅助酶法提取—高效液相色谱—电感耦合等离子体质谱联用分析食品中无机硒和硒氨基酸6种硒形态[J]. 食品科技, 2016, 41(12): 266-272. XIONG J, QIN Y L, GONG L, et al. Analysis of six selenium forms in inorganic selenium and selenium amino acids in food by ultrasonic-assisted enzymatic extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Food Science and Technology, 2016, 41(12): 266-272.
[20] 曾凤泽, 姚宇泽. 微波辅助酶萃取—高效液相色谱—电感耦合等离子体质谱法测定灵芝中6种硒形态[J]. 理化检验(化学分册), 2020, 56(11): 1 152-1 157. ZENG F Z, YAO Y Z. Determination of six selenium forms in Ganoderma lucidum by microwave-assisted enzyme extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Physical and Chemical Testing (Chemistry), 2020, 56(11): 1 152-1 157.
[21] 魏琴芳, 贾彦博, 胡文彬, 等. 液相色谱—电感耦合等离子质谱联用法测定大豆中的5种硒形态[J]. 食品安全质量检测学报, 2020, 11(8): 2 456-2 461. WEI Q F, JIA Y B, HU W B, et al. Determination of five selenium forms in soybeans by liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Food Safety and Quality Inspection, 2020, 11(8): 2 456-2 461.
[22] 王贤波, 聂晶, 翁丽萍, 等. 高效液相色谱—电感耦合等离子体质谱法测定大豆中的6种硒形态[J]. 农产品质量与安全, 2023(3): 36-41. WANG X B, NIE J, WENG L P, et al. Determination of six selenium forms in soybeans by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Agricultural Products Quality and Safety, 2023(3): 36-41.
[23] ZHANG Q H, YANG G P. Selenium speciation in bay scallops by high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection after complete enzymatic extraction[J]. Journal of Chromatography A, 2014, 1 325: 83-91.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.