Abstract
[Objective] This study aimed to evaluate the antioxidant activity of natural birch juice from Changbai Mountain.[Methods] Antioxidant activity was measured through four chemical assays:DPPH radical scavenging rate,ABTS cation scavenging rate,hydroxyl radical scavenging rate,ferric ion reducing ability (FRAP ).Additionally,antioxidant enzyme activities and oxidative stress markers were assessed using zebrafish embryo as a model organism.[Results] The antioxidant activity of birch juice increased with concentration,showing a significant positive correlation.At 1.0 mL/mL concentration,birch juice exhibited optimal effects,achieving 34.56% DPPH scavenging,18.27% ABTS scavenging,48.77% hydroxyl radical scavenging,and 90.07 μmol/L ferrous ion reduction.In zebrafish embryos,the activities of SOD,CAT,and GSH -Px were significantly elevated,along with increased MDA content,compared to the control group.[Conclusion] Natural birch juice demonstrates substantial antioxidant properties,highlighting its potential for development into natural antioxidant foods,as well as anti -aging and skin -whitening products.
Publication Date
4-3-2025
First Page
160
Last Page
165
DOI
10.13652/j.spjx.1003.5788.2024.80444
Recommended Citation
Qi, XING; Haiyan, CHEN; Liyu, HUA; Chao, WANG; Ke, LI; and Jiying, LIU
(2025)
"Antioxidant effects and enzymatic analysis of birch sap on zebrafish embryos,"
Food and Machinery: Vol. 41:
Iss.
2, Article 20.
DOI: 10.13652/j.spjx.1003.5788.2024.80444
Available at:
https://www.ifoodmm.cn/journal/vol41/iss2/20
References
[1] GE Z W,WANG D,ZHAO W T,et al.Structural and functional characterization of exopolysaccharide from Leuconostoc citreum BH 10 discovered in birch sap [J].Carbohydrate Research,2024,535:108994.
[2] SANCHO A I,BIRK T,GREGERSEN J M,et al.Microbial safety and protein composition of birch sap [J].Journal of Food Composition and Analysis,2022,107:104347.
[3] WU J,YANG C L,LIU J,et al.Betulinic acid attenuates T- 2-toxin-induced testis oxidative damage through regulation of the JAK 2/STAT 3 signaling pathway in mice [J].Biomolecules,2019,9(12):787.
[4] CHEN H Y,LI R J,ZHAO F,et al.Betulinic acid increases lifespan and stress resistance via insulin/IGF- 1 signaling pathway in Caenorhabditis elegans [J].Frontiers in Nutrition,2022,9:960239.
[5] OSTAPIUK A,KURACH Ł,STRZEMSKI M,et al.Evaluation of antioxidative mechanisms in vitro and triterpenes composition of extracts from silver birch (Betula pendula Roth ) and black birch (Betula obscura Kotula ) barks by FT-IR and HPLC-PDA [J].Molecules,2021,26(15):4 633.
[6] HÄSLER GUNNARSDOTTIR S,SOMMERAUER L,SCHNABEL T,et al.Antioxidative and antimicrobial evaluation of bark extracts from common european trees in light of dermal applications [J].Antibiotics,2023,12(1):130.
[7] KŪKA M,ČAKSTE I,GERŠEBEKA E.Determination of bioactive compounds and mineral substances in Latvian birch and maple saps [J].Proceedings of the Latvian Academy of Sciences Section B Natural Exact and Applied Sciences,2013,67(4/5):437-441.
[8] SMILJANIC S,MESSARAA C,LAFON-KOLB V,et al.Betula alba bark extract and Empetrum nigrum fruit juice,a natural alternative to niacinamide for skin barrier benefits [J].Int J Mol Sci,2022,23(20):12507.
[9] ARTEAGA C,BOIX N,TEIXIDO E,et al.The zebrafish embryo as a model to test protective effects of food antioxidant compounds [J].Molecules,2021,26(19):5 786.
[10] MAHMOOD I,AZFARALARIFF A,MOHAMAD A,et al.Mutated Shiitake extracts inhibit melanin-producing neural crest-derived cells in zebrafish embryo [J].Comp Biochem |Physiol C:Toxicol Pharmacol,2021,245:109033.
[11] ULHAQ Z S,TSE W K F.Perfluorohexanesulfonic acid (PFHxS ) induces oxidative stress and causes developmental toxicities in zebrafish embryos [J].J Hazard Mater,2023,457:131722.
[12] REN F,HUANG Y J,TAO Y Z,et al.Resveratrol protects against PM2.5-induced heart defects in zebrafish embryos as an antioxidant rather than as an AHR antagonist [J].Toxicol Appl Pharmacol,2020,398:115029.
[13] DANG K D,HO C N Q,VAN H D,et al.Hexavalent chromium inhibited zebrafish embryo development by altering apoptosis- and antioxidant-related genes [J].Curr Issues Mol Biol,2023,45(8):6 916-6 926.
[14] BILEK M,SIEMBIDA A,GOSTKOWSKI M,et al.Antioxidative capacity of birch saps [J].Biotechnology and Food Science,2017,81(1):3-10.
[15] NOROCEL L,PĂDUREŢ S.Evaluation of birch sap (Betula pendula ) quality during storage [J].Scientific Study & Research Chemistry & Chemical Engineering,Biotechnology,Food Industry,2020,21(2):217-226.
[16] KWAN W S,ROY V A L,YU K N.Review on toxic effects of di(2-ethylhexyl ) phthalate on zebrafish embryos [J].Toxics,2021,9(8):193.
[17] WANG Y P,ZHOU M,WANG J,et al.Developmental cardiotoxicity and hepatotoxicity of flurbiprofen axetil to zebrafish embryo [J].Assay Drug Dev Technol,2022,20(3):125-135.
[18] LIU Z H,SHANGGUAN Y Y,ZHU P L,et al.Developmental toxicity of glyphosate on embryo-larval zebrafish (Danio rerio )[J].Ecotoxicol Environ Saf,2022,236:113493.
[19] 辛玥,宋萧萧,王玉箫,等.豇豆不同部位多糖结构特征及抗氧化性能比较 [J].食品科学,2022,43(16):61-67.XIN Y,SONG X X,WANG Y X,et al.Structural characteristics and antioxidant properties of polysaccharides from different parts of cowpea [J].Food Science,2022,43(16):61-67.
[20] 倪策,曹天红,陈敏,等.核桃粕源抗氧化活性肽的酶解制备及活性分析 [J].食品与机械,2024,40(5):51-61.NI C,CAO T H,CHEN M,et al.Enzymatic hydrolysis preparation and activity analysis of antioxidant peptides derived from walnut dregs [J].Food & Machinery,2024,40(5):51-61.
[21] 吕新河,朱云龙.泥鳅蛋白多肽的抗氧化活性 [J].食品与生物技术学报,2022,41(1):22-27.LU X H,ZHU Y L.Study on antioxidant activity of loach protein polypeptide [J].Journal of Food Science and Biotechnology,2022,41(1):22-27.
[22] ZLATIĆ G,ARAPOVIĆ A,MARTINOVIĆ I,et al.Antioxidant capacity of herzegovinian wildflowers evaluated by UV-VIS and cyclic voltammetry analysis [J].Molecules,2022,27(17):5 466.
[23] 刘昱.双氟磺草胺对斑马鱼成鱼及胚胎的毒性效应研究 [D].泰安:山东农业大学,2022:11-25.LIU Y.Toxic effects of difluorosulfonate on adult and embryonic zebrafish [D].Taian:Shandong Agricultural University,2022:11-25.
[24] BITTNER L,TEIXIDÓ E,KEDDI I,et al.pH-dependent uptake and sublethal effects of antihistamines in zebrafish (Danio rerio ) embryos [J].Environ Toxicol Chem,2019,38(5):1 012-1 022.
[25] WANG M X,WANG H Y,CHEN G L,et al.Spiromesifen conferred abnormal development in zebrafish embryos by inducing embryonic cytotoxicity via causing oxidative stress[J].Aquat Toxicol,2022,252:106324.
[26] FU J,BAE S.The pH-dependent toxicity of triclosan on developing zebrafish (Danio rerio ) embryos using metabolomics [J].Aquat Toxicol,2020,226:105560.
[27] BALIYAN S,MUKHERJEE R,PRIYADARSHINI A,et al.Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa [J].Molecules,2022,27(4):1 326.
[28] GULCIN İ.Antioxidants and antioxidant methods:an updated overview [J].Arch Toxicol,2020,94(3):651-715.
[29] GÜLÇIN İ.Fe3+-Fe2+ transformation method:an important antioxidant assay [J].Methods Mol Biol,2015,1 208:233-246.
[30] FORMAN H J,ZHANG H.Targeting oxidative stress in disease:promise and limitations of antioxidant therapy [J].Nat Rev Drug Discov,2021,20(9):689-709.
[31] BORODUŠĶIS M,KAKTIŅA E,BLĀĶE I,et al.Chemical characterization and in vitro evaluation of birch sap and a complex of plant extracts for potential use in cosmetic anti-ageing products [J].Environmental & Experimental Biology,2017,15(1):29-36.
[32] YOUNG I S,WOODSIDE J V.Antioxidants in health and disease [J].J Clin Pathol,2001,54(3):176-186.